Artificial intelligence in testing: Top five use cases in financial services in 2019

Publish date:

Artificial Intelligence is critical for optimizing the testing process, aiding automation, and ultimately designing software that is self-healing. Read on to learn about key use cases on how AI can be leveraged for testing in the financial services world

Our intelligence is what makes us human, and AI is an extension of that quality.” – Yann LeCun

The global financial services industry is at an inflection point. Customer experience across all channels has become a must and, as a result, customers are increasingly adopting digital products and services.

However, digitization has increased complications for testing professionals. Open banking, lightweight architectures, and legacy systems integrated with a plethora of applications are making testing extremely time-consuming.

Our recent World Quality Report, a joint publication by Capgemini, Microfocus, and Sogeti, indicates that artificial intelligence (AI) in testing is an upcoming trend to improve speed to test particularly for digital initiatives in financial services. It is aimed at optimizing the testing process, aiding automation, and ultimately designing software that is self-healing.

Fifty-nine percent of our financial services respondents stated that they would use AI techniques to optimize their QA processes. Our survey identified five use cases that are the top choice for using AI in testing. These are indicated by the figure below:

Intelligent automation: 50% of our financial services respondents stated that they would use AI for intelligent automation. This implies deciding what to automate by using machine learning algorithms – algorithms such as co-relation and random forest algorithms.

Predictive analytics: 41% respondents stated that they would use AI for predictive analytics. As an example, machine learning algorithms such as regression and time-series algorithms can be used for defect prediction and release prediction.

Prescriptive analytics: 39% of the respondents stated that they would use AI for predictive analytics. This implies deriving various insights such as what to test to drive intelligent decision making. For example, NLP algorithms, such as cosine similarity, can identify duplicate test cases and hence can be used for optimizing test suites.

Cross application dashboards: 32% of the financial services respondents stated that they would use AI for cross-application dashboards. This means using machine learning algorithms to create cross-application dashboards. It is critical to determine application dependencies in terms of requirements, test assets, and environments, which provide a single view to plan and govern testing activities.

Self-learning cognitive platforms: 36% of respondents said that they would use AI for self-learning cognitive platforms. A use case for this is adopting machine learning algorithms to automate test environments and test case remediation across complex IT environments.

To start on this journey, my recommendation is to firs understand above-mentioned use cases. Second, evaluate the pain areas in testing where these use cases would bring value. Reliable data is a pre-requisite for any use case. A great place to start would be to build on data from application life cycle management tools, for example defect data. The next step would be to define metrics to measure success for each use case. Finally, create a small team comprising of professionals possessing data analytics, statistics, and machine learning algorithms that can create proofs of concept and drive this transformation.

To learn more about how AI is being implemented in testing for financial services, feel free to get in touch with me on https://www.linkedin.com/in/deepika-mamnani-2205943

Related Posts

banking

BigTech challenges to traditional banking are on the rise

Sankar Krishnan
Date icon April 11, 2019

BigTech firms have huge customer bases and data – and they’re now venturing into the...

continuous testing

An intelligent approach to continuous testing

Deepika Mamnani
Date icon March 25, 2019

Integrating testing as part of the continuous delivery pipeline is a key initiative in the...

cookies.

By continuing to navigate on this website, you accept the use of cookies.

For more information and to change the setting of cookies on your computer, please read our Privacy Policy.

Close

Close cookie information