LIFTING THE LID ON CORPORATE INNOVATION IN THE DIGITAL AGE
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>The main shifts that changed the way firms innovate</td>
<td>5</td>
</tr>
<tr>
<td>Disruption is real</td>
<td>5</td>
</tr>
<tr>
<td>The shift towards transformational innovation</td>
<td>6</td>
</tr>
<tr>
<td>The capabilities shortfall</td>
<td>8</td>
</tr>
<tr>
<td>How are companies transforming their innovation systems?</td>
<td>9</td>
</tr>
<tr>
<td>A profound shift in innovation sources used by large firms</td>
<td>9</td>
</tr>
<tr>
<td>The most important innovation sources for firms</td>
<td>11</td>
</tr>
<tr>
<td>The answer lies outside</td>
<td>12</td>
</tr>
<tr>
<td>Big trends in innovation</td>
<td>14</td>
</tr>
<tr>
<td>Digital Innovation becomes the norm</td>
<td>14</td>
</tr>
<tr>
<td>A new wave of digital technologies</td>
<td>15</td>
</tr>
<tr>
<td>Big Lessons</td>
<td>17</td>
</tr>
<tr>
<td>Not-Invented-Here Syndrome is dead</td>
<td>17</td>
</tr>
<tr>
<td>Internal resources are still important</td>
<td>18</td>
</tr>
<tr>
<td>Resources interdependence</td>
<td>20</td>
</tr>
<tr>
<td>Coordination is everything</td>
<td>21</td>
</tr>
<tr>
<td>Key takeaways</td>
<td>23</td>
</tr>
<tr>
<td>Conclusion</td>
<td>25</td>
</tr>
<tr>
<td>About the research</td>
<td>26</td>
</tr>
</tbody>
</table>
INTRODUCTION

Corporate innovation in large organizations is in a state of flux. The way that firms innovate has changed substantially in the last five years. These changes are structural in nature and are mainly the result of firms shifting their investments towards more digital technology. This is not new. Since the internet went public in the 1990s, we have seen the convergence of several emerging technologies that have opened up the opportunity for digitally transforming businesses. What has changed in the last five years or so is that we are seeing the emergence of a new class of digital technologies which, alone or in combination, has a much wider potential application within firms. These could be characterized as general-purpose technologies, such as IoT (Internet of Things), Artificial Intelligence (AI), 5G and others. These technologies are opening myriad transformational business opportunities. But, in relation to corporate innovation, this is a good news/bad news story. The good news is that executives now have powerful new tools to innovate and find new sources of value creation. The bad news is that these emerging technologies rely on advanced technical and analytical skills that are new, rare and expensive.

Despite this plethora of new and exciting technological possibilities, many large firms have struggled, or are still struggling, with their first foray into digital transformation. Some firms have managed to successfully navigate this new disruptive and volatile environment, but many have not.

Why are firms struggling? For many, the challenge is graduating from the first wave of digital transformation, digitizing operations by streamlining processes or connecting to customers and suppliers in more digital ways, to the second – creating new sources of value using these new general-purpose digital technologies. In this second wave, corporate innovation becomes the cornerstone of digital transformation. Mastering digital innovation will separate the leaders from the followers. To succeed will require a profound transformation of corporate innovation systems – processes, capabilities, organization.

So, have firms transformed their innovation systems? Have they sourced innovation differently? Have they leveraged these new general-purpose digital technologies successfully to create new business opportunities? And have they effectively developed their capabilities to succeed?

THE MAIN SHIFTS THAT CHANGED THE WAY FIRMS INNOVATE

Disruption is real

For decades, companies have been transforming in order to stay abreast of technological advancement. In the 1990s, we experienced a rapid expansion of the commercial internet and the emergence of new digital technologies. This became an era of disruptive innovation where the survival of many traditional growth models was challenged by new, technology-enabled, business models.

Over the past few decades, the average tenure on the S&P Index of the top 500 American market capitalization has drastically decreased. In 1960, the average tenure was 60 years, whereas by 2010 it had dropped drastically (Figure 1).

Figure 1: Average company tenure on S&P 500 Index

![Average company tenure on S&P 500 Index](image)

2. Source: adapted from INNOSIGHT, “Creative destruction whips through corporate America” 2012, based on INNOSIGHT/Richard N. Foster/Standard & Poor’s data
We observe a similar pattern on the revenue side. The Fortune 500 list includes the 500 American companies with the biggest revenue. Of the 500 companies listed in 1955, only 48 were still in the list 37 years later. This shows a clear shortening of the shelf life of big companies (Figure 2). Moreover, this trend of shelf-life shortening is heightened for companies listed in the Fortune 500 in 1995.

Figure 2: Rapid change in the Fortune 500

With the emergence of an era of disruptive innovation, big companies need to defend against new challengers that are using digital technology to find different ways of serving customer needs. So, how have corporate innovation systems evolved to take on these new challenges?

The shift towards transformational innovation

In our previous report, we described innovation architecture as the structure that firms build to balance the exploitation of existing core assets (horizon 1) and the exploration of new businesses, markets or customers (horizon 3). Exploration is obviously the riskier of the two, and consequently has a higher failure rate. Conversely, exploitation of existing core businesses has a more reliable outcome but often with less potential upside. Companies must navigate this trade-off between creating potentially valuable, but risky, innovation through exploration and smaller, more predictable, innovation through exploitation.

There are many models attempting to capture the different innovation horizons. For the purpose of our research, we have characterized the three innovation horizons as below (Figure 3):

Incremental innovation: Improvements to existing products or services that require only minor changes to existing business practices; evolutionary rather than revolutionary (e.g., iPhone 7 compared to iPhone 6)

Substantial innovation: New products or services, or re-designs of existing ones, that require considerable change to existing business practices (e.g., changing cell phones to touchscreens instead of physical buttons)

Transformational innovation: A fundamental change to existing products or services that meaningfully changes the business model or value proposition (e.g., cell phones vs. landlines)

In 2012, Nagji and Tuff conducted a cross-industry study to assess the optimal allocation of resources along the three innovation horizons. The authors found that high performing firms, on an average, allocate 70% of their innovation resources to core innovation (incremental), 20% to adjacent innovation (substantial) and 10% in transformational innovation. And so, the authors encouraged other firms to target these levels.

Figure 3: Three horizons model

Our research finds that firms are overshooting Nagji and Tuff’s target for being more transformative (Figure 4). This suggests that, in the last six years, corporations seem to have re-oriented their innovation investment portfolios towards riskier, substantial and transformational projects.

Figure 4: Innovation investment portfolio

To be able to take the step towards more transformative innovation, companies need to innovate outside of their core business models. To do that, they generally have to rely on capabilities they do not have in-house.

The foundation of Corporation Innovation in the Digital Era: Capgemini Report

*Elsewhere also called “adjacent”, which can be misleading. Hereafter we will use “substantial” innovation

*In some previous texts “substantial” innovation was called adjacent, which is a misnomer, hence we replaced the term

The capabilities shortfall

While incremental innovation focuses on small improvements to existing products, e.g., creating variations to serve different market segments, transformational (i.e., radical) innovation is a departure from existing products and explores new technology, market, process, or business models. Transformational innovation is more expensive and riskier, but it can also be more rewarding.

This shift towards more transformational innovation represents a great challenge for companies, especially due to the capabilities needed to foster this type of disruptive innovation. To explore new technologies, markets, processes or business models, big firms need to rely on deep technical or engineering capabilities, which few firms have in-house in any volume.

Innovation executives confirm this challenge. Fifty-one percent of large companies recognized that for the innovation projects that they were pursuing, others had superior capabilities for innovating in that area. At the other extreme, in only 9% of projects that were pursued did executives consider that their internal resources and capabilities were better than those of others (Figure 5).

Figure 5: Internal capabilities

Big corporations are faced with a gap between the capabilities they need and those that they have internally. To fill that void, they are relying more and more on external innovation sources. While the shift to external innovation has been much discussed, there is little data that quantifies the nature and scale of this shift. Our research details the innovation sources that big corporations are using and how their use has evolved over time.

Big companies must turn to external innovation sources to find the resources and capabilities that they lack internally. Antti Koskelin, KONE Chief Information Officer confirms this observation: “We realized that we cannot develop all technologies by ourselves inside our company R&D […] During the past two years we have taken a lot of actions to partner with different technology companies and start-ups to capture digitization opportunities.”

Figure 6: Innovation sources used by big firms

3G. Manoochehri Measuring Innovation: Challenges and Best Practices, California Journal of Operations Management, Volume 8, Number 1, February 2010

98
Traditional innovation source such as suppliers is used by 85% of the 300+ companies surveyed. John Pittenger, Strategy and Innovation Lead for Koch industries gives us an example: “We had to figure out how to make black leggings with Lycra but there are myriad dye and carbon black combinations. We could have spent years doing it, but we said: who knows more about the color black and how it works? So, we selected some more knowledgeable partners and did some Edisonian work until we came up with the right types of black combinations. We could have spent 2 years on Lycra but there are myriad dye and carbon hotspots (e.g. Silicon Valley).

In addition to traditional innovation sources, which are still widely used, we observe the emergence of new sources such as universities, innovation labs or start-ups.

This broadening to newer innovation sources is growing fast. For example, of the 20% of companies using crowd as an innovation source (Figure 6) in 2018, almost none of them were doing so five years ago. Similarly, only 6% of companies using start-ups as an innovation source today started more than five years ago (Figure 7). So, a substantial part of the broadening of innovation sourcing has happened only in the last five years, even though open innovation is being practiced for over 15 years. This shift could be explained by the rise in prominence of digital transformation and the digital skillsets needed to operate new technologies.

Interestingly, innovation sources supporting the most successful projects are different from the most important innovation sources used at the company level (Figure 8). Whilst 56% of the 320 companies surveyed said that central R&D was the most important innovation source for their company, only 34% said that their most successful project had come from central R&D. On the other hand, fast-growing sources such as universities and innovation labs have been producing more of the most successful projects than their company’s overall innovation would suggest. One potential explanation is that companies are using these newer innovation sources for big bets on projects that use capabilities that are rare in the rest of the company.
We see a similar dynamic in how the top three most important innovation sources for companies are shifting (Figure 9). For example, only 8% of companies agreed that universities were one of their top three innovation sources five years ago. Now, they are 40% of saying so. At the same time, some traditional sources are becoming notably less important to companies, such as business unit staff, suppliers or customers.

Moreover, some of the projections around what will be important in five years are likely to be based on hype. One of the reasons for this is that far more firms now believe that crowd will be one of their three most important sources in five years than those currently using them; this suggests that many are making this judgment without any direct experience.

These shifts in sourcing dynamics are steered by one key driver of change – capabilities.

The answer lies outside

When firms lack critical capabilities internally, it is hard for them to do leading-edge innovation themselves. In such a scenario, they can turn to external innovation sources to access these competencies. We see this clearly in our data; the more a company has a comparative advantage in innovating using their internal resources, the less it will use external innovation sources. Conversely, when a company feels that its internal resources are only as good as many others, they shift towards using external innovation sources (Figure 10).

This race to access new and rare resources pushes companies to search outside of their boundaries and borders. This externalization of innovation presents three main characteristics:

- **It is recent:** Thirty-three percent of companies interviewed mentioned innovation labs as one of their top three innovation sources now, and it was important for only 2% companies five years ago (see Figure 9 above).

- **It is broad:** Big companies are expanding their innovation sources. By going external they are extending the number of innovation sources they use. Our panel use, on average, three different external innovation sources.

- **It is growing fast:** New external innovation sources such as Innovation Labs, Startups and Crowd are growing faster than others (see Figure 7 above).
Digital Innovation becomes the norm

Digital transformation is no longer a new phenomenon, but firms continue to up their investment in it. Sixty-two percent of companies told us that they have invested “more” to “a lot more” in digital innovation as compared to five years ago. The vast majority of corporate projects are digital. When asked about the nature of their innovation with various innovation sources, respondents answered that 82% of their projects were primarily digital. This skew towards digital is even more pronounced among the most successful business projects, where executives told us that 95% of their most successful projects were primarily digital. This was remarkably consistent across all seven industries we studied.

The focus on digital innovation by companies can also be seen in the growth of innovation sources used. We can see that the most adopted innovation sources in the last two years are digital-focused (Figure 11).

Figure 11: Newly adopted innovation sources are digital-focused

Increased focus on digital has been followed by increases in revenue. Corporations investing more in digital innovation are generating a bigger share of their revenue from new or significantly improved goods or services (Figure 12). It is unclear whether the increase in digital investment generates the increased revenue or if firms are investing in digital innovation alongside a larger push for more revenue. Either way, digital projects and digital innovation are now core to corporate growth strategies.

Figure 12: Investment in digital innovation

A new wave of digital technologies

In recent years, we have seen an amazing array of near-future science fiction technologies (or more often combinations of technologies) opening up endless business opportunities to innovate – VR/AR, IoT with 5G mobile networks and the re-birth of AI.

This new wave of digital technologies presents features of what economists call General-Purpose technologies. Bresnahan and Trajtenberg (1996) argue that a general-purpose technology should present the following three characteristics:

1. Pervasiveness – which means it can be spread to most sectors of the economy
2. Improvement – the technology should get better over time
3. Innovation spawning – the technology should foster and ease innovation of new products and processes

While General Purpose Technologies (GPTs) such as AI present a lot of business opportunities, they also bring new challenges. Large organizations need to source new capabilities and resources to use them, but these can be scarce. One solution is to source innovation externally: the digital innovation being outsourced to universities, start-ups and other fast-growing sources are indeed those where firms have particularly weak capabilities (Figure 13). This capability shortfall is even more clear when looking at the difference between digital and non-digital projects. When firms turn to the fastest-growing external innovation sources (Universities, start-ups, third-party, crowd) for non-digital projects, they still rate their own internal capabilities as equal to the leaders in the field 44% of the time. But for the digital projects that they are sourcing from universities, start-ups, third-party and crowd, they only have capabilities equal to leaders in the field 19% of the time.
However, the digital innovation capabilities of firms are not uniformly poor. When they innovate internally on digital projects, they judge their own capabilities as leader-level 69% of the time. So big corporations do have good digital capabilities internally, but not in all areas. For new digital capabilities, big firms turn to external sources.

Figure 13: Internal capabilities and innovation

![Bar chart showing share of digital and non-digital projects where firm capabilities are "as good as leaders" or better.]

The rise of digital technologies, which stretch the internal capabilities of a company, is profoundly changing the face of corporate innovation. To make the most of these business opportunities, large corporations must evolve rapidly. Capabilities are the cornerstone of capturing these opportunities. But the new capabilities required are not always available internally, so large corporations must find and access them wherever they are available.

Not-Invented-Here Syndrome is dead

The Not-Invented-Here Syndrome is the alleged tendency of R&D workers to discount or ignore knowledge from sources external to their organization or work team. In our research, this would have meant that some big companies would rely solely on internal innovation sources. However, nearly all of the 320 companies surveyed used at least one external innovation source. Indeed, sourcing innovation externally has become the norm: firms in our panel use an average 3 different external innovation sources (Figure 14).

Figure 14: Number of external innovation sources used

![Bar chart showing share of companies using external innovation sources by the number of sources used.]

Internal resources are still important

Internal and external sources are joined at the hip

It would be logical to conclude from the data that the explosion of external sources of innovation is a signal that firms are externalizing, or even virtualizing, their innovation systems. However, that would be wrong. The dynamics of innovation in a digital age are more subtle. Our data shows that this shift to harness external innovation sources is not a substitution. Firms are not abandoning their internal innovation efforts to become virtual R&D organizations. Indeed, using internal sources holds a lot of advantages. And, it remains by far the most important innovation source being used by firms. For instance, 69% of respondents have mentioned central R&D as being amongst their top three innovation sources (see Figure 9 earlier). Our interviewees clearly reinforced the need to build internal capabilities: “we rely on our employees at all levels for continuously getting better at what we do,” “we have very talented people in our research center who work on cutting-edge topics, but for capabilities that we do not have, we identify people from outside and hire them,” and “to successfully integrate innovations from the outside world, having the right internal innovation team is key.” Instead, this move represents a broadening of innovation sourcing aimed at accessing the digital capabilities that firms lack internally, where coordination between internal and external sources is the main challenge.

Internal innovation gives a more persistent competitive advantage

Internal sources have an important commercial advantage. They provide more enduring advantage to the company. The logic here was well articulated by Farhan Siddiqi, Chief Digital Officer of Ahold Delhaize who commented “For the long run, you have to be clear on what capabilities will be strategic, enable differentiation and potential innovation. Invest in building these capabilities in-house, now. Outsourcing these strategic skills will limit achieving differentiation, and mostly provide parity with competitors that are leveraging similar, outsourced partners.” Over-relying on external sources for innovation increases the risk that competitors, in the same industry, will call on the same external sources, watering down any competitive advantage.

Our research confirms the risk of externalization or outsourcing. When using internal sources, 87% of company projects produced an advantage which persisted. In contrast, only 60% of projects externally sourced yielded persistent competitive advantage, and 37% of the time competitors or outsiders matched or overtook them (Figure 15).

But, while internal innovation may have advantages, companies may not have a choice for the new wave of technologies such as IoT or AI. Using innovation sources outside the firm may be the only way that they can access the capabilities they need. But care is needed. These skills providers are marketing their newer technologies to all market segments and, in many cases, pushing very similar use cases to all their clients. Large firms can still have an advantage through combining these technologies in superior ways, and/or by having better streamlined processes internally. However, on the whole, our research points to innovating internally as being the most effective way to protect innovation and ensure a persistent competitive advantage.

Internal is the primary innovation source for non-digital innovation

The share of non-digital projects is drastically smaller than digital ones amongst important projects. However, almost all those non-digital projects are sourced through internal innovation: 66% of the total of non-digital projects come from BU staff (dedicated or operational). Indeed, these units have a deep understanding of customers and good domain expertise. Moreover, they are familiar with the way teams operate within a company when faced with such innovation projects.

For example, when innovating on ways of working, internal expertise is crucial. As a Transformation Management Office head of an international information technology company tells us, “Most of our innovation programs are business process transformation programs. Therefore, the vast majority of the internal resources required to make these programs successful comes from the various business organizations where these processes reside. If it is a program to transform the way we source components from a procurement perspective, then we need procurement domain experts to participate in the business process transformation program.”

As a result, internal innovation still holds a predominant place in large corporations, e.g. central R&D is the second most used innovation sources in our research at 77% (see Figure 6). The two main advantages that internal innovation offers – a better protection of innovation and specific expertise only gained internally – will remain an important source of competitive advantage for large firms in the digital age.
Resources interdependence

Another subtlety of the dynamics of innovation in the digital age is that the coordination of sources and resources (internal and external) is core to innovation success. Corporate innovation in the digital world is broadening, not becoming virtual. If R&D had been becoming virtual (i.e. substituting internal innovation to external innovation sources), there would have been a negative relationship between external and innovation use. However, we found that when firms use external innovation sources, there is a positive relationship with the use of internal ones (Figure 16).

Figure 16: Dynamics of internal/external innovation sources

Therefore, companies are working with a mix of internal and external resources; we found that the fast-growing innovation sources were also the ones relying on a cooperation between internal and external sources (Figure 17).

Coordination is everything

One of the traditional problems with remote/external sources of innovation is isolation from the core business. Firms have struggled for many years to find effective organizational integration models which ensure that promising digital innovations are integrated into business units and scaled. This is even more pronounced in the case of the new wave of technologies that are fueling digital transformation today. Gambardella and McGahan identified this phenomenon: “The newest kinds of business problems raised by these trends arise from the distance between general-purpose scientific technologies and the techniques required for understanding how to put them into use effectively. Typically, the development of technology - especially general-purpose technology - requires skills, assets and investments in engineering and scientific disciplines and knowledge, in research, and the like. Understanding which product or service might become commercially successful requires marketing and sociological insight, experimentation with users, and the ability to match needs with technological solutions.”

To manage this coordination, firms have developed new organizational formats to access external innovation. Innovation labs, one of the most popular, present a particularly interesting change in innovation sourcing, as they are hybrid internal/external source of innovation. Executives tell us clearly that innovation labs are primarily an internal source, but one that is designed to be more outward-facing than traditional sources. This hybrid approach has gained popularity as an innovation model in recent years as it facilitates the identification, the incubation and/or the partnering with start-ups and universities. A Capgemini study found that 279 innovation labs were built between 2015 and 2017. This is an increase of 92% in only two years, whereas only 301 innovation labs existed in 2015. In theory, innovation labs should also allow for outside technologies to be more easily integrated into the core operations of a firm. However, in our interviews many executives pointed out that this depended heavily on getting the right people, processes and organizational structure in place. Nick Kerigan at Barclaycard explicitly connected the growth of their innovation portfolio to start-ups and their new incubator.

Figure 17: Resource interdependence between external and internal sources

Slope 0.54***
(0.08)

So, the same firms that have moved to a more open innovation model, are also using more internal innovation sources – perhaps building a specialized central R&D team or an innovation lab. Open innovation is a necessary digital complement to corporate innovation systems. However, relying on internal resources and building solid digital capabilities in-house still matters for competitive advantage.

15 The discipline of innovation: making sure your innovation center actually makes your organization more innovative*, Capgemini Invent, 2017.
In his own words, “the acceleration of digital transformation externally, allied with the growth of Fintech, has been one of the drivers of a faster pace of change in our industry. We have responded to that opportunity by evolving the way we innovate and seeking win-win partnerships with startups, through the Barclays Accelerator for example. 18-24 months ago, all the narrative was all about how Fintechs were going to disrupt incumbent financial institutions, now the narrative is much more of bank-Fintech collaboration.”

Open innovation is a necessary digital complement to business innovation systems; but, in the long run, building solid digital capabilities internally still matters for competitive advantage. There are no cure-all solutions. And many innovation labs have failed to deliver a positive business return. Spending time on building the right innovation architecture and aligning the right resources, both internally and externally, is the only way to maximize the chances of success.

Clearly, companies face a challenge in getting the balance between internal and external resources right. On the one hand, open innovation is an effective way to source the capabilities they do not possess, especially in the short run. However, in the long run, building capabilities internally is the best way to gain competitive advantage. That is why, we believe, companies must use a combination of internal and external innovation in order to succeed. For most companies, a three-step innovation approach works best:

I. Identify technological competencies

The first step a company must take is to identify the technological capabilities that are likely to be critical in the future. Some of that happens during the annual strategy planning process; most companies conduct an annual gap analysis of the capabilities they lack, and there are board-level and business-level discussions about whether they should be plugged. Rarely does the exercise result in a roadmap showing the capabilities which companies should develop internally in the medium or long runs, and those that they must source externally immediately; that is the missing link.

The key element in the calculation will, of course, be if the acquisition of the technological capability will help differentiate the company from rivals. The degree to which digital technologies are critical will differ; accessing data science expertise may be critical for a chemicals-manufacturer, for instance, but it might not be for a real estate management company that only needs to understand sales and rental trends. The next step must be to find the sources that will allow the company to access the critical technological competences and applications. Companies should reach out to universities, start-ups, and others to figure out who is conducting the most exciting innovation relevant to them and build a portfolio that can fill their competency gaps (see Figure 4). Keeping abreast of numerous would-be sources of external innovation can be difficult, requiring focused attention and dedicated time by seasoned executives.

II. Create an architecture

Developing new sources of innovation requires companies to rebuild their innovation architectures, so they can manage both internal and external sources of innovation. It is important to get the three building blocks right.

First, most companies will have to refine their organization’s design. For instance, if one external innovation source will be start-ups, the company must create a way of managing its relationships – such as an incubator, an innovation sandbox, a venture fund, or something similar – and their investments in them.

Second, the innovation process must change if the company’s powerful business units are to buy into and adopt external innovations. One catalytic structure is an innovation lab or center in which a company can co-locate researchers to gain access to the capabilities of the innovation ecosystems in places such as Silicon Valley or Shenzhen. These can be staffed by employees seconded from the
company’s businesses, which helps get buy-in for external innovations.

Finally, companies must develop innovation governance models with appropriate metrics to ensure consistency with their strategy. Many of the companies we studied initially struggled with governance and metrics. They assigned people to innovation projects, but the business units retained control of the budgets and approvals. That resulted in slowing down the innovation unit, which was hamstrung by the bureaucracy. Best practice is often to have a senior level executive overseeing the innovation project to ensure that the growth, innovation strategy and objectives are consistent with the architecture and operating model in place.

III. Develop transfer processes

One of the most common mistakes companies make is not laying down a technology competence transfer strategy from the very outset. By transfer strategy, we mean a roadmap that shows how externally developed capabilities and skills will be brought into the company in the medium or long run. There is no one-size-fits-all solution, though; the circumstances will determine each company’s approach.

It is essential to think through different models and develop several paths for bringing externally sourced skills into the company. In some cases, a company will be able to hire technological capabilities from external sources; in other situations, it might make sense to acquire start-ups (a.k.a. acquihire). A third option could be to develop a build-run-transfer partnership. This arrangement will allow a technology firm with the capabilities the company needs to build a dedicated team and manage it initially. Over a period of time, the partner transfers the team, and all its work, to the parent.

Disruption in companies is real and evident. In order to stay afloat, big firms must change the way they innovate and adapt their innovation sources. In the context of the new wave of digital technologies, capabilities primarily drive the innovation in companies. Indeed, critical capabilities are at the cornerstone of the ability to create value and make the most of the digital tools available today. Our survey shows that companies are looking for those specific capabilities outside of the firm with newer innovation sources such as universities or innovation labs, when they lack them internally. However, the importance of more traditional innovation sources, such as central R&D or suppliers, still remains. We can conclude that R&D is not becoming virtual; firms are not substituting one source for another; they are rather broadening their innovation sources. Moreover, the lines are blurring between external and internal innovation and newer fully hybrid models (such as innovation labs or intrapreneurship) are taking off.

In the next few years, companies will have to adapt their organization and ways of collaborating to support these fully hybrid models. The key to successfully meeting the innovation challenge in the digital era is to identify the critical capabilities needed, find the balance between internal and external innovation sources through a clear architecture and find a way to incorporate critical resources in-house.
The MIT-Capgemini Corporate Innovation research was conducted in 2018-19. We conducted in-depth interviews with some 30 large corporations across industries and geographies to obtain a granular understanding of their innovation practices and systems. We then structured and administered a survey to quantify these innovation practices and systems. Through Phronesis Partners, we polled innovation leaders at 320 large firms ($500M+ revenues/year) and gathered data on 640 innovation projects. The sample covered firms from the U.S., China, UK, Germany, France, Australia, Japan and South Korea across seven industries.

This is the second report of a series, after

‘The Foundations of Corporate Innovation in the Digital Age’.
About Capgemini Invent

As the digital innovation, consulting and transformation brand of the Capgemini Group, Capgemini Invent helps CxOs envision and build what’s next for their organizations. Located in more than 30 offices and 22 creative studios around the world, its 6,000+ strong team combines strategy, technology, data science and creative design with deep industry expertise and insights, to develop new digital solutions and business models of the future.

Capgemini Invent is an integral part of Capgemini, a global leader in consulting, technology services and digital transformation. The Group is at the forefront of innovation to address the entire breadth of clients’ opportunities in the evolving world of cloud, digital and platforms. Building on its strong 50-year heritage and deep industry-specific expertise, Capgemini enables organizations to realize their business ambitions through an array of services from strategy to operations. Capgemini is driven by the conviction that the business value of technology comes from and through people. It is a multicultural company of over 200,000 team members in more than 40 countries. The Group reported 2018 global revenues of EUR 13.2 billion.

Visit us at www.capgemini.com/invent

People matter, results count.

The information contained in this document is proprietary. ©2020 Capgemini. All rights reserved. Rightshore® is a trademark belonging to Capgemini.