
A Capgemini Architecture Whitepaper – 2nd Edition

DevOps - The Future of Application
Lifecycle Automation

the way we see itInfrastructure Services

Contents
1 DevOps Introduction 04

1.1 DevOps Market 05

1.2 DevOps overview 06

2 DevOps Challenge 08

2.1 Complex pre-production/on-production build and run 08

2.2 Error prevention and diagnosis 08

2.3 Wall of confusion 08

2.4 Rate of change versus stability 09

3 DevOps Impact 10

4 DevOps Value 11

5 DevOps Concept 12

5.1 Change culture 12

5.2 Development-to-Operations lifecycle 13

5.3 Common tooling 18

6 DevOps Implementation 19

6.1 Define a clear target 19

6.2 Establish a clear transformation plan 20

6.3 Actively manage the plan execution 20

6.4 DevOps Maturity Model (DMM) 20

7 Summary 23

8 Appendix B: References 23

Table of Figures
Figure 1: Gartner’s latest Hype Cycle for Enterprise Architecture 04

Figure 2: Gartner’s DevOps market predictions 05

Figure 3: Software Development Lifecycle and DevOps 06

Figure 4: Development-to-Operation Challenges and DevOps “solutions” 06

Figure 5: Gartner’s: “Pace Layers for DevOps” 09

Figure 6: DevOps Value 11

Figure 7: Cultural Change 12

Figure 8: Stakeholder Principles and Mindset 13

Figure 9: People Ecosystem 13

Figure 10: Development-to-Operations Lifecycle 14

Figure 11: Environment Reference Model 15

Figure 12: Environment Key Characteristics 17

Figure 13: Common Tooling Approach 18

Figure 14: DevOps Implementation Framework (DIF) 20

Figure 15: Capgemini’s DevOps Maturity Model (DMM) 21

Introduction
Development to Operations (DevOps) will have a profound impact on the global IT
sector in the near future. Realizing DevOps’ full potential, IT vendors have been agile
enough in providing new products and services under the label “DevOps inside”, at
an ever- increasing pace.

However, with the growth in product choices, conflicting definitions and competing
services, customers often encounter confusion, while making complex purchase
decisions. They often seem to be unsure about how to deploy DevOps and get the
most out of the solution.

While not trying to delve deep into DevOps, the Whitepaper tries to answer the
following key questions:

•	 What is DevOps?
•	 What is DevOps trying to achieve?
•	 What are the key benefits?
•	 How will DevOps achieve this?
•	 How best to make use of the new developments?

Its aim is to help the reader:
•	 Understand	the	DevOps	concepts
•	 Understand	its	current	value	and	restrictions
•	 Get	insight	into	how	we	at	Capgemini	implement	DevOps	efficiently	

For more information on Capgemini visit
www.capgemini.com

About the Author
Gunnar	Menzel	has	been	an	IT	professional	for	over	25	years	and	is	the	VP	and	Chief	
Architect Officer for Capgemini’s Infrastructure Business. His main focus is business-
enabling	technology	innovation.	Gunnar	is	also	currently	the	president	of	the	Open	
Data Centre Alliance. His main focus is business-enabling technology innovation.

Thanks	to	Andrew	Macaulay,	Ajith	NC,	Ajay	Dhanesh	for	their	invaluable	contributions.

Sustainability
Please	consider	the	environment	and	do	not	print	this	document	unless	absolutely	
necessary. Capgemini encourages environmental awareness.

Disclaimer
The	information	contained	in	this	document	is	proprietary.	Copyright	©	2015	
by Capgemini. All rights reserved.Reproduction in whole or part without written
permission is prohibited.

Gartner says
that by 2016
DevOps will evolve
from a niche to
a mainstream
strategy employed
by 25% of Global
2000 organizations

3

the way we see itInfrastructure Services

1 DevOps Introduction
The speed of application development and application change is increasing and with
it, the demand of “Rolls Royce like” quality. Companies look to build new capabilities
with high expectations being placed on the IT department. Although the IT industry
has taken huge leaps in technology innovation, the quality of application development
projects	has	been	lagging.	Many	IT	projects	run	inefficiently,	missing	implementation	
deadlines and causing outages during or after implementation and therefore, costing
significantly more than anticipated.

DevOps is the new development that addresses such inefficiencies. It connects
development, quality assurance, and technical operations personnel in a way that the
entire ‘build-release-run-repeat’1 process operates as a factory, having clear roles and
responsibilities and well-defined inputs and outputs2.

In	Gartner’s	latest	Hype	Cycle	for		application	services,	2015;3 DevOps is positioned
right	in	the	Peak	of	Inflated	Expectations:

The aim of DevOps is to revolutionize the transition, de-risk IT deployments, eliminate
the excuse “but-it-works-on-my-system”, and break the silos between developers,
testers, release managers, and system operators. The products and tools developed
in this area focus on maximizing predictability, visibility, and flexibility, while
maintaining stability and integrity.

DevOps, in itself, is not a new concept. A development-to-operations lifecycle
has existed for quite some time. The latest developments include the ambition to
industrialize, automate, and connect the entire process covering infrastructure,
application, as well as business changes. The prime focus is on outage reduction and
quality improvement.

Marketing and Customer
Management Consulting

Application Modernization Services

Knowledge Services

Multisourcing Service Integrator

As of July 2015

Plateau of
Productivity

Trough of
Disillusionment

Peak of
Inflated

Expectations
Innovation

Trigger

Time
Plateau will be reached in:

Less than 2 years 2 to 5 years 5 to 10 years More than 10 years
Obsolete
before plateau

Slope of Enlightenment

Cloud Computing
Business Analytics Services
Application Testing Services

Big Data

IT/OT Convergence

Machine Learning
Predictive Analytics
DevOps

Agile Project Management

Enterprise-Class
Agile Development

Crowdtesting
Adaptable Automation

(Smart-Machine-Enabled Services)
Business Process as a Service (BPaaS)

Prescriptive Analytics
Outsources and SIs as CSBs

Microservices
Digital Business Consulting Services

Vetted Crowsourced Community
Unvetted Crowsourced Community

Crowdsourcing of Microwork

Big Data and ERP
Application Services Communities

Information Valuation and Infonomics

Cognitive-Enabled Services
(Smart-Machine-Enabled Services)

Intelligent-Process Autonomic Services
(Smart-Machine-Enabled Services)

Application Portfolio Management

Expectations
Disruptive Technology and Trends

DevOps

Figure	1:	Hype	Cycle	for	Application	Services,	2015DevOps is now
at its inception
point - enabling
Business to drive
real value.

Gartner	July	2015

4 DevOps - The Future of Application Lifecycle Automation

1.1 The DevOps Market
DevOps has fundamentally changed the way an IT organization works and how it
gets	things	done.	Since	its	inception	in	2009,	DevOps	(coined	as	the	“new	Cloud”	
by market) has been adopted at a rapid pace, evolving from a niche concept to an
integral part of enterprise IT strategy. This fast pace in adoption was mainly due to
the immediate value realization that DevOps helps business to build better-quality
products and services quickly and with greater reliability.

Over the next 5
years, the DevOps
market looks very
positive, with
many sources
forecasting double-
digit growth and
a higher adoption
rate

Figure	2:	Gartner’s	DevOps	market	predictions	

Revenue ($M)

DevOps Ready

Growth

CAGR = compound annual growth rate
Note: DevOps is a composite market, comprising software tools that are the part of other major markets within Gartner Market Share
and Forecast documents.

Source: Gartner (February 2015)

DevOps Enabled

Growth

DevOps Capable

Growth

Growth

2013 2014 2015 2016 2017 2018 2019

2000

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

70%

60%

50%

40%

30%

20%

10%

0%

Gartner predicts that the DevOps market is set to grow from $1.9bn in 2014 to $2.1bn in 2015,
showing a very healthy growth of ~11%.

Ready

Enabled

Capable

36.2%

15.3%

10.2%

Revenue Five-Year CAGR

In	addition	to	the	research	by	Cloud	providers,	major	product	and	tool	vendors,	
DevOps market movement has been catalyzed by increased Cloud adoption,
emergence	of	concepts	like	containerization,	Platform-as-a-Service,	micro-service	
architecture, service virtualization, and a strong contribution from the open-source
community with several cost-optimized DevOps enabling tools. The early adopters
or	the	“DevOps	Unicorns”	like	Netflix,	Amazon,	Google,	Etsy,	and	Snapchat	have	
continuously innovated and showcased successful DevOps model variants like
NoOps,	ChatOps,	and	SmartOps.

In a recent study, Rackspace4	interviewed	700	IT	decision	makers	and	found	55%	of	
the organizations had already implemented or adopted DevOps and are looking for
enhancements.	Further	31%	of	them	plan	to	use	DevOps	in	the	next	2	years.	This	
adoption is among the largest in the side of technology for the initial implementation
of tools.

Today, the DevOps trend not only goes beyond technology implementation
and management but also focuses on a positive organizational change brought
across its processes, cultural shift, and security and compliance aspects of the
DevOps platform.

Over	the	next	5	years,	the	DevOps	market	looks	very	positive,	with	many	sources	
forecasting double-digit growth and a higher adoption rate as larger enterprises begin
to understand the benefits DevOps can bring in terms of cost reduction and agility.

5

the way we see itInfrastructure Services

1.2 DevOps Overview
In simple terms, DevOps refers to an umbrella concept that encompasses people,
processes, and technologies required to connect development to execution.

“Connect” in this context means ensuring that the development changes are tested
and deployed in a way that is efficient and does not interrupt ongoing operations.

An important goal of DevOps is to reduce change-related outages. A number
of factors give rise to outages. Complex releases, change and configuration
management, higher change cycles, siloed setups, and narrow thinking are the key
contribution factors.

DevOps	as	a	concept	(or	Gartner5 refers to it as a “philosophy”) is trying to address
four main challenges which affect costs of development and impact on run (live
services or operations):

As mentioned earlier, DevOps is not a new concept, but the efforts to harmonize
several aspects of the entire Development-to-Operation process mark the beginning
of	a	new	era.	Gartner6 refers to DevOps as, “… (an) IT service delivery approach
rooted in agile philosophy with an emphasis on business outcomes, not business
orthodoxy.”

Development
User

Acceptance
Test

Seamless Environment
Build

Continuous Integration On-Demand Scalability Quality & Compliance

Operational
Acceptance

Test
Live

Functional
Test

Non-
Functional

Test
Unit Test

Figure 3: Development-to-Operations Lifecycle

A
d

d
re

ss
ed

 b
y

Development-to-Operations
Challenges

1. Complex pre-production /
 production build and run
2. Inefficient and complex error
 prevention and diagnosis
3. Siloed setup and narrow
 thinking – Wall of confusion
4. Increase in rate of change
 versus stability

1. Change culture
2. One Development-to-
 Operations Lifecycle
3. Common Tooling

DevOps “solutions”

Figure 4: Development-to-Operation Challenges and DevOps "solutions"

Figure 3 implies
a pure waterfall
approach.
DevOps “works”
with multiple
approaches:
parallel software
development
lifecycles (rapid,
agile, etc.)

6 DevOps - The Future of Application Lifecycle Automation

Many	vendors	and	market	analysts	emphasize	on	‘agility’,	which	connects	
development with operations to address the above-mentioned issues.

Agility is a critical element to:

•	 Reduce complexity
•	 Aid error diagnosis
•	 Remove the siloed setup
•	 Eliminate	the	narrow	mindedness
•	 Deal with the rate of application change

To	some,	DevOps	is	a	panacea	for	all	ills;	for	others,	it	is	a	marketing	gimmick,	similar	
to	the	“Emperor’s	new	clothes7”. However, the truth lies somewhere in the middle.

Traditionally, we have been focusing too much on the process of delivering the actual
solution, designed to create a change. However, to deliver the intended change, we
need to focus on tools, processes, and people, while ensuring the stability of our
service delivery.

DevOps makes an attempt to reduce inefficiencies by addressing the impact of
development changes (new or existing) on three factors: tools, processes, and
people.	However,	the	DevOps	concept	has	not	attained	full	maturity.	Gartner8 outlines
three key challenges for organizations planning to adopt DevOps:

1.	 The lack of a standard definition for DevOps has created confusion for
infrastructure and operations (I&O) leaders, trying to adopt this philosophy

2.	 There is no standard or simple approach regarding the adoption of DevOps by an
enterprise I&O leader, causing confusion about how and where to start

3. Each	DevOps	implementation	is	unique	and	every	customer	requires	a	
customized approach

Activities are underway to address the lack of a standard definition (first challenge).
The	Open	Group	has	announced	a	new	Forum	IT4IT9 during its London Conference
in	October	2014,	which	attempts	to	standardize	a	DevOps	related	framework.	The	
remaining two challenges will be subsequently addressed in the near future.

Three key
implementation
challenges:

1. Lack of standard
definition

2. Lack of a
standard
approach
regarding
DevOps’
adoption

3. Customization
required for each
implementation

7

the way we see itInfrastructure Services

2. DevOps Challenges
During coding and testing functional and non-functional areas, the IT department
needs to ensure that the changes are accurately implemented and that the new
capabilities comply with business requirements. Development cannot be carried out
in a live environment. Hence, new and separate environments (pre-production and
on-production environments) are needed to allow developers to write new or change
an	existing	code	(or	change	application	configurations	for	COTSa products). This also
enables testing of both functional and non-functional aspects of the end product.

Four main challenges are typicallyb prevalent in this scenario:

2.1 Complex Pre-production/On-production Build and Run
For sophisticated application landscapes with complex integration setups, creating,
setting-up, and deploying a new environment is costly and prone to errors.

Generally	servers,	storage,	network,	and	application	environments	are	built	and	
configured in a semi-automatic fashion. At best, different teams are responsible
for deploying new servers and applications. Considering the huge cycle time from
requisition to receipt of a new environment, the entire process seems to be fraught
with inefficiencies. At times, in the absence of dedicated teams, a single resource
manages	the	entire	show,	which	adds	to	the	inefficiency.	Moreover,	managing	the	
consistency of the environment configuration introduces complexity, and the risk of
failures adds to probabilities of lower quality of deliverables. At times, in light of cost
considerations, some of the key functional teams like security and compliance may
not participate during the environment build. This may impact the live deployment
of code.

2.2 Error Prevention and Diagnosis
As a result of the complex challenges (mentioned above) moving/promoting code to
the live environment involves risks and may give rise to outages. With higher manual
intervention,	the	risks	of	errors	and	outages	multiply.	Many	a	time,	such	errors	aren’t	
caught instantly and may have an impact on other processes, for instance, testing
of an application change. In this case, the tester would most probably assume that
the error is due to the change and would request the developer to fix the issue. The
developer would typically use a development environment to write and “unit test”
his	change.	Now,	as	his	environment	differs	slightly	from	the	test	environment	no	
error is reported, i.e. ‘it works for me.’ Root cause analysis in this case will ultimately
result in valuable resources being spent on diagnosis of why the change works in
development environment but not in the test environment.

2.3 Wall of Confusion
Developers, on one hand, are incentivized to maximize ‘change’ — writing new
code or enhancing the existing one , while on the other, operations personnel are
encouraged	to	minimize	change	(in	order	to	maintain	KPIsc	and	SLAsd). Further, both
groups operate in diverse organizations within a firm and may have different budgets.
Typically,	developers	work	within	a	project	delivery	organization	(assisted	by	project),	
whereas operations staff work within support organization (assisted by technology).
Location of both the resources in physically different areas adds to the problem.
Developers often perceive operations staff as ‘innovation blockers’, while operations
staff see developers as those who don’t understand the importance of stability. Both
the groups are critical for the long-term sustainability of the business, to decrease

DevOps
Challenges:

1. Complex pre-
production/
on-production
build and run

2. Error prevention
and diagnosis

a.	COTS	=	Commercial	off	the	Shelf	

b. Typically means that these are most common
causes

8 DevOps - The Future of Application Lifecycle Automation

outages and minimize expenditure. To achieve this, a close collaboration among both
the groups is crucial.

2.4 Rate of Change versus Stability
Different	applications	cause	different	rates	of	change	versus	stability.	Gartner’s	‘Pace-
Layered	Application	Strategy’	outlines	a	way	to	categorize	applications	into:

1.	 Systems	of	Record	(typically	ERP-type	applications)
2.	 Systems	of	Differentiation	(typically	business-specific	applications,	often	COTS	

applications with customization)
3. Systems	of	Innovation	(typically	new	web-based,	agile	development	focused	

applications)

+

+–

–

C
ha

ng
e

G
overnance

Systems of
Innovation

Systems of
Differentiation

Systems of
Record

DevOps

Traditional

Source: Gartner (September 2014)

Figure	5:	Gartner’s:	‘Pace	Layers	for	DevOps’

DevOps
Challenges:

1. Wall of
confusion

2. Rate of change
versus Stability

c. KPI=Key	Performance	Indicator

d. SLA=Service	Level	Agreements

9

the way we see itInfrastructure Services

3. DevOps Impact
The IT Process Institute’s Visible Ops Handbook10 reports that 80% of unplanned
outages are due to ill-planned changes made by administrators (“operations staff”) or
developers. A recent Gartner study projected11 that Through 2015, 80% of outages
impacting mission-critical services will be caused by people and process issues,
and more than 50% of those outages will be caused by change/configuration/release
integration and hand-off issues.

According	to	IDC’s	“DevOps	and	the	Cost	of	Downtime:	Fortune	1000	Best	Practice	
Metrics	Quantified”12:

•	 The	average	hourly	cost	of	an	infrastructure	failure	is	$100,000
•	 The	average	hourly	cost	of	a	critical	application	failure	is	$500,000	–	$1M
•	 The	average	number	of	deployments	per	month	is	expected	to	double	in	2	years
•	 Unplanned	application	downtime	costs	the	Fortune	1000	from	$1.25	billion	to	$2.5	

billion every year.

Calculating the costs associated with these outages is not straight forward, as costs
include tangible/direct costs, such as lost transaction revenue, lost wages, lost
inventory, remedial labor costs, marketing costs, bank fees, and legal penalties from
not	delivering	on	service-level	agreements;	and	intangible/indirect	costs,	including	
lost business opportunities, loss of employees and/or employee morale, decrease
in stock value, loss of customer/partner goodwill, brand damage, driving business
to competitors or even bad publicity/press. Taking into consideration any of the
above causes, the cost to the organization is in millions of dollars. Furthermore, the
increased number of manual changes and deployment relates directly to the average
downtime range, thus increasing the associated cost too.

The goal of DevOps is not to eliminate errors/downtime, rather automate manual
tasks and create repeatable processes with greater transparency, traceability, thus
zeroing down on the level of manual intervention and helping organizations attain a
stable and reliable IT infrastructure, ensuring uninterrupted business continuity with a
level of acceptable risks. By this process, Devops help organizations attain a stable
and reliable IT infrastructure. Therefore, one of the drivers of increasing interest in
DevOps practices and tools is the significant reduction of unplanned downtime and
the cost associated with it.

A	recent	Puppet	Labs	study	—	2015	State	of	DevOps	—	states	that	high-performing	
IT	organizations	experience	60	times	fewer	failures	and	recover	(Mean-time-to-
Recover)	from	failure	168	times	faster	than	their	lower-performing	peers.

DevOps, if applied correctly to an organization, will play a significant role in improving
IT stability and has a direct impact on business.

80% of all
production
outages are
change related.
This is where
DevOps can drive
real value.

DevOps
can increase
deployment
frequency by
factor 30 and lead
times by factor
8000!

10 DevOps - The Future of Application Lifecycle Automation

4. DevOps Value
DevOps has 4 main value propositions

Figure	6:	DevOps	Value

To enable near-
instant change

deployment

To increase end-
user satisfaction

To increase
Innovation cycles

Upto 80%
outages are

change-related

Reduced OutagesIncreased Agility Increased Quality Improved Innovation

DevOps can drive
agility, quality,
innovation whilst
reducing outages
in production

Agility and outage-reduction are the two main drivers that clients target when
implementing DevOps capabilities. However, increased quality and innovation cycles
are another set of key benefits clients might want to consider when applying DevOps.
To a large extent, most of these drivers can directly be related and translated into cost
savings.	Reducing	outages	will	have	an	impact	on	cost	avoidance;	increased	quality	
will have an impact on end-user satisfaction and therefore, clients may be able to
increase their profits.

4.1 Increased Agility
Speed	to	market	or	better-maximized	agility	through	a	constant	and	fully	integrated	
deployment	capability	is	one	key	aspect	here.	Moving	from	a	release	cycle	from	every	
quarter to deploying changes on a minute-by-minute basis is a real aspiration. For
many clients this is a massive leap, for some this is a reality.

4.2 Increased Quality
Puppet	Labs’	survey13 suggests that high-performing organizations are deploying
code	30	times	more	frequently,	with	50%	fewer	failures	than	their	lower-performing	
counterparts. Increased quality is one of the key benefits of DevOps. It will, however,
increase quality only when the organization reaches a certain level of maturity. As
outlined	in	the	Capgemini	Maturity	Model	(detailed	below)	we	differentiate	5	levels	of	
maturity:	Basic,	Emerging,	Co-ordinated,	Enhanced,	and	Top	Level.	

4.3 Improve Innovation
Experiencing	fewer	outages	and	deploying	code	with	increased	quality	will	lead	to	
more time spent thinking about further improvements or new ways of working. It will
enable the organization to drive more value, rather than having to dedicate time fixing
issues caused by changes deployed.

4.4 Reduced Outages
As outlined before, outage-reduction is a big area of value. By applying a DevOps
approach, companies will be able to avoid loss of sales and other outage related
implications by improving ways of working, automation, and continuous deployment.

11

the way we see itInfrastructure Services

5. DevOps Concept
DevOps tries to address the aforementioned challenges through higher automation,
increased visibility, and tighter control of the pre-production and on-production
environments and deployment/promotion of code through diverse environments.

It also tries to reduce the “wall of confusion” between development and operations
personnel by harmonizing the development and operations tools (allowing feedback
from	operations	to	development)	as	well	as	re-aligning	objectives	and	incentives.

5.1 Change Culture
Ensuring	that	each	individual	is	part	of	the	entire	solution	lifecycle	covering	
development and operations is one key DevOps concept — to break the ‘wall
of confusion’. Its main aim is to create an appraisal methodology that can
jointly	measure	and	reward	performance.	All	key	parties	that	are	involved	in	the	
“development-to-operations-service” supply chain must share same/similar
objectives	and	targets,	and	each	person’s	performance	must	be	assessed	against	
their impact within the context of the entire solution lifecycle.

Individuals should be assessed according to the overall change development and
deployment as well as the resulting process stability. Thus, both the work groups
should be measured using a supply chain rather than a siloed approach.

DevOps	is	not	only	tooling;	it	encompasses	people,	processes,	and	tools,	with	
‘people’ being the critical element of the equation. In order to effectively use the tools
across the process or lifecycle, people should be encouraged to abide by a number
of guiding principles to drive a common mindset:

LiveDevelopment Test Development LiveTest

Change = Yes pls No, no change pls Change Welcome

Tr
an

sf
or

m

Figure 7: Cultural Change

A key to
successful
implementation:
address the
cultural change

12 DevOps - The Future of Application Lifecycle Automation

In short, strive towards excellence.

Fostering, driving, and encouraging each individual to follow these principles is
important	to	drive	a	common	objective.	However,	to	reach	a	common	consensus,	
every individual needs to comprehensively try and understand the role of
other resources.

5.2 Development-to-Operations Lifecycle
The entire development-to-operations lifecycle must be seen and operated as
one coherent end-to-end process, rather than numerous multiple and diverse
steps. Individual methodologies can be applied for individual steps, such as
agile or waterfall, as long as these can be connected together to form one end-
to-end process.

Stakeholders Principles Mindsets

1.	Partner	with	customers Focus on business value

2.	Work	towards	a	shared	vision Advocate for your constituency

3. Deliver incremental value Take pride in workmanship

4. Invest in quality Deliver on your commitments

5.	Empower	team	members Keep a solution perspective

6.	Set	clear	accountability	 Foster a team of peers

7. Learn from experiences Practice	good	citizenship

8. Foster open communications Improve continually

9.	Stay	agile	(expect	and	adapt	to	change) Understand	qualities	of	service

Figure	8:	Stakeholder	Principles	and	Mindset

Figure	9:	People	Ecosystem

Operations
Support

Operations

Technology Architects

Customer

Users

Project
Sponsor

Solution
Architects

Technology Focus

Business Focus

User
Experience

Product
Management

Release/
Operations

Program
ManagementDevelopment

Architecture

Test

Team
The ideal
resources
ecosystem

13

the way we see itInfrastructure Services

‘Connect’ is a key aspect here. For organizations located across diverse
geographies, change is global. Application development is being increasingly
carried	out	in	remote	locations.	Unit	code	as	well	as	non-functional	testing,	interface	
and user acceptance testing, and end-user training are also executed in diverse
locations. However, a commonly agreed development-to-operations lifecycle
is deployed.

A feedback loop runs from the live environment to the start of the cycle. Constant
improvement to DevOps is an important facet of the lifecycle, and this requires:

•	 Bug	reporting	–	Providing	an	easy	means	to	capture	(through	social	media	for	
external sites), triage, track, or add to developers’ backlogs

•	 Feature	suggestions	–	Allowing	users	to	provide	their	feedback	on	a	service	which	
may	come	through	tools	such	as	UserVoice,	which	can	then	be	integrated	with	
the lifecycle

•	 Availability,	performance,	and	usage	monitoring	–	Allowing	feedback	on	
operational aspects to provide insights (or maybe report defects) into
future developments

•	 Instrumentation	–	Allowing	more	specific	measures	to	be	captured	which	are	
meant to be used as insights into future developments

Part	of	the	process	definition	is	a	clear	understanding	of:

1.	 Principles	and	Purposes	(see	3.2.1)
2.	 Environment	Reference	Model	(see	3.2.2)
3. Environment	Key	Characteristics	(see	3.2.3)

5.2.1 Principles and Purposes
To deploy a common development-to-operations lifecycle, one requires a clear
definition of the key process principles and purposes. The development-to-
operations lifecycle:

•	 Is necessary to build, test, and deliver the changes to existing applications or the
implementation of new applications

•	 Plays	a	crucial	role	to	manage	the	large	volume	of	changes		associated	with	a	
multi-platform environment

•	 Provides	traceability	of	change	processes	from	requirements	to	release	without	
any disruption

Development
User

Acceptance
Test

Seamless Environment
Build

Continuous Integration On-Demand Scalability Quality & Compliance

Operational
Acceptance

Test
Live

Functional
Test

Non-
Functional

Test
Unit Test

Figure	10:	Development-to-Operations	Lifecycle

DevOps suggests
implementing
a continuous
deployment cycle
and not one that
ends at live

14 DevOps - The Future of Application Lifecycle Automation

•	 Provides	a	single	version	of	truth,	as	end-to-end	traceability	ensures	that	the	
operations team implementing the application change has a solid understanding
of the requirements

•	 Enables	a	strong	foundation	to	understand	the	requirements	
•	 Ensures	adequate	validation	during	the	integration	or	acceptance-testing	phase	of	

the release

5.2.2 Environment Reference Model
Subsequent	to	understanding	the	DevOps	lifecycle	principles,	it	is	crucial	to	define	
the use of various environments needed to support the different steps. To achieve
this,	the	characteristics	and	type	of	data,	SLAs,	and	the	amount	of	change	and	
release management must be clearly outlined:

Environment Purpose Characteristics Type of Data SLAs Change
Release	Management

Workshop
Environment

Temporary
environment used
for presentation,
pilots, etc

Sometimes	
called sandpit
environment. Built
and maintained by
the	project	team

Non-live	only No	(unless	
explicitly defined/
agreed)

None

Performance	
Testing
Environment

Test environment
to simulate load
testing to prove
performance
characteristics

Temporary
only;	Built	and	
maintained by the
project	team

Full live “like” data No	(unless	
explicitly defined/
agreed)

None

Development
Environment

Environment	to	
develop software
applications;	
ideally one
environment per
application

Usually	
permanent, either
created	by	project	
or by central
service, testing
only at code level

Only subset of live
“like” data

No	(unless	
provided as a pre-
defined service)

None

Functional Test
Environment

Test environment
to perform
business related
testing

Temporary
environment,
created by the
project	and	
functional testing
teams

Only subset of live
like data

No	(unless	
provided as a pre-
defined service)

None

User	Acceptance	
Test	Environment

Test environment
to perform end-
to-end functional
testing

Temporary
environment,
created by the
project	and	
functional testing
teams

Only subset of live
“like” data

No	(unless	
provided as a pre-
defined service)

None

Figure	11:	Environment	Reference	Model

15

the way we see itInfrastructure Services

Although these environments are not exhaustive, they constitute a list of possible
environments and should be seen as a reference model. Once the DevOps
implementation approach is in place, a decision to choose the right type of
development and testing environments should be taken following a thorough
analysis of the business operations. After choosing the type of environments, the IT
department has to decide upon the data residency. Data may reside either on local
servers	or	in	a	private	or	public	Cloud	environment.	Each	environment	is	expected	to	
have the following characteristics:

Environment Purpose Characteristics Type of Data SLAs Change
Release	Management

Training
Environment

Training
environment to
perform end-to-
end functional
training

Temporary
environment,
created	by	project	
teams to perform
end-user training

Only subset of live
“like” data No Yes

System	
Integration Testing
Environment

Test environment
to test interfaces
and data-related
aspects

Temporary
environment,
created	by	project	
teams to perform
system-related
interface testing

Only subset of live
“like” data No Yes

Operational
Testing
Environment

Test environment
to test all non-
functional related
aspects

Permanent	
environment,
created to
simulate the live
environment

Only subset of live
“like” data No Yes

Support	
Environment

Environment	
to replicate
live issues and
develop/trial
fixes from either
the frontend or
backend

Permanent	
environment,
created to
simulate the live
environment

Only subset of live
data No Yes

16 DevOps - The Future of Application Lifecycle Automation

Title Statement Motivation Implications

1 Complete Each	environment	must	be	complete	
with all components, even if it is
not	subject	to	testing.	‘Complete’	
here implies the level of separation
of infrastructure and networking
components with an appreciable
level of security. It also implies
working with same privileges, a
live environment would offer. This
would ensure that a piece of code
produces output in a similar fashion,
whether in a development or live
environment, despite a firewall
between the two

To ensure accurate test results,
it is important to include
the dedicated and shared
components in a single pre-
production environment

When dedicated applications
use shared components
such as databases, etc.,
it is important to perform
complete application specific
tests followed with regression
tests, using the shared
component. This should be
done from a perspective of
performance and availability

2 Up-To-Date It is essential to maintain all the
environments and their components
up-to-date. Changes in the live
environment must be routed back to
the master and from there pushed,
to the different environments

‘Up-to-date’	for	a	live	
environment is performed for
an exact simulation of the live
environment. This involves
binary codes as well as system
configuration.

Proper	change	and	
configuration management is
vital to be up-to-date

3 Management Each	environment	must	be	owned	
and managed by a single person
to ensure that the environment is
complete and up-to-date

Ownership is important to
ensure consistency during
the	project	lifecycle.	Usually	
live support team takes the
ownership of pre-production
or new services. However, in
case	of	new	projects,	ownership	
might be taken by a different
entity

All environments must be
owned and managed by
a	single	person	–	usually	
the change manager, who
ensures quality and integrity of
the development environment.

4 Support Each	environment	must	be	
supported by adequate support
resources

It is important to ensure accurate
testing and fast identification
and isolation of bugs or errors.
To ensure adequate system
enhancements for live services,
the pre-production environment
is usually backed by live support.
While identifying errors and
raising queries, the pace of
responses should be maintained
at an optimum rate, before the
test cycle starts.

Allocate adequate resources
during	the	project	conception	
stage.

5 Independence Each	environment	must	be	
independent, isolated from other
environments, and complete with all
resources

This is important to ensure
that no other pre-production
environment is affected during
implementation of changes

Ensure	independence	while	
determining the components
to be included in an
environment

Figure	12:	Environment	Key	Characteristics

17

the way we see itInfrastructure Services

Common Tooling
This is a prime aspect that garners a lot of attention. A single tool or a combination of
tools that allows for a simple or fully automatic request should be deployed. It should
be able to create, operate, and destroy any type of pre-production or on-production
environments. It should include infrastructure related, middleware and application-
related components. The aim should be to accelerate the transition through
environments in an efficient and cost-effective manner. The result would be more
testing	in	an	early	testing	phase,	leading	to	higher	quality.	A	number	of	IaaS	tools,	as	
well as middleware and applications-based process tools are available today. While
Docker,	Puppet,	Chef,	and	ControlTier	are	examples	of	existing	tools;	VMWare’s	
Codestream is a new entrant. Traditional enterprise vendors provide a host of
toolsets.	For	instance,	Microsoft	offers	Team	Foundation	Server/Visual	Studio	Online	
along	with	Microsoft	System	Centre	and	Azure.	They	sync	with	tools	like	Docker	and	
Chef	and	also	integrate	with	social	media	through	UserVoice,	Azuqua,	etc.

These tools allow developers and operational staff to request, create, operate, and
destroy pre-production or on-production environments in an industrialized manner.

Gartner,	during	April	2014,	published	a	quick	overview	of	the	“Cool	Vendors	in	
DevOps”5	.	However,	as	mentioned	above,	there	is	no	one	tool	that	does	it	all;	
instead a ‘toolset’ approach needs to be employed. The toolset should cover the
entire development-to-operations lifecycle, from infrastructure to business. It should
empower the resources to execute the work allocated to them in an efficient manner.

Development

Applications

Middleware

Infrastructure

Testing

Applications

Middleware

Infrastructure

Live Operation

Applications

Middleware

Infrastructure

One End-to-End Process

Figure	13:	Common	Tooling	Approach

There is no
single DevOps
tool: Use, apply,
and connect the
right tools using
an end-to-end
process

18 DevOps - The Future of Application Lifecycle Automation

6. DevOps Implementation
As	outlined	in	1.1,	the	adoption	of	DevOps	is	hampered	by	a	number	of	key	aspects14:

1.	 The lack of a standard definition for DevOps has created confusion for
infrastructure and operations (I&O) leaders, trying to adopt this philosophy8

2.	 There is no standardized or simplified approach regarding the adoption of
DevOps by an enterprise I&O leader, causing confusion about how and where
to start8

3. Each	DevOps	implementation	is	unique,	and	every	customer	requires	a	
customized approach8

In practice, tools, methods, and technologies are seldom deployed on green-field
sites and having implemented DevOps for more than a decade now, we believe that
the key to successful implementation is to:

•	 Define a clear target
•	 Establish	a	clear	transformation	plan
•	 Actively manage the plan execution

DevOps implementation should not be merely perceived as deploying a new tool
like	CodeStream	or	Docker.	It	should	be	viewed	from	a	bigger	perspective	and	
should	be	planned	and	executed	in	an	efficient	manner.	Poorly	planned	DevOps	
implementation may result in significantly higher costs.

DevOps implementation starts with creating a business case, mapping a way
for code migration between environments (considering people, processes, and
technology),	and	placing	focus	on	the	target.	Understanding	the	‘As-is’	scenario,	
mapping the ‘To-be’ scenario, and estimating the benefits of moving to the ‘To-
be’ scenario are critical for success. DevOps implementation should be backed
by	a	strong	business	case.	Every	environment	does	not	benefit	from	full	or	partial	
DevOps deployment. For instance, environments with little change requirements
may not benefit from DevOps implementation at all. In our experience, many DevOps
projects	have	failed	due	to	the	absence	of	a	strong	business	rationale	or	a	poorly	
planned start.

6.1 Define a clear target
DevOps claims to reduce impact of changes to reduce cost and minimize impact
to	the	live	services.	As	applicable	to	every	change	project,	the	decision	to	change	
culture or processes and to deploy the right tools must be backed by a strong
business	case.	Many	businesses	struggle	to	take	the	right	decisions	at	this	stage.	
To estimate the benefits of DevOps implementation within their environment, they
should analyze the existing situation — the existing tools, processes, resources, and
their skills.

Then,	as	the	“snowflake”	point	in	Gartner’s	paper8, each client context is different
and what works for one might not work for the next.

Capgemini is working on a generic DevOps Implementation Framework (DIF) that will
formulate the “artifacts” needed to define the target and create a business case.

Three steps
for a successful
DevOps
implementation:
1. Define a target
2. Establish a plan
3. Manage plan
execution

19

the way we see itInfrastructure Services

6.2 Establish a clear transformation plan
Once a business case is created and approved, a detailed plan of actions is needed
to manage the implementation of the changes needed to achieve the anticipated
outcomes set out in the business case. Typically, three actions need to be followed:

4. Change the culture
5.	 Establish	one	Development-to-Operations	Lifecycle
6. Deploy common tooling

The choice of activities that need to be executed for a solution depends on the actual
context and needs to be established during the “define a clear target” step.

6.3 Actively manage the plan execution
In addition to careful formulation of the plan, it is important to carry out an
efficient execution.

6.4 DevOps Maturity Model (DMM)
DevOps	cannot	be	achieved	by	executing	a	single	project.	Organizations	need	to	
implement tools and processes as a coordinated program and evolve the cultural
aspect over a period of time. The progress must be tracked by identifying the stage
the organizations have reached and then creating a road map to achieve the desired.

Capgemini’s	DevOps	maturity	model	(DMM)	is	a	framework	that	enables	businesses	
to identify the current maturity level and actions required to be taken to reach the
next	level.	DMM	gauges	the	maturity	level	using	the	core	three	dimensions	of	people,	
process and tools. This model can also be used as a guide for improvement across a
project,	division,	or	an	entire	organization.	

Capgemini	DMM	helps	stakeholders	to	understand	and	derive	an	implementation	
plan and can be used a reference to outline the current DevOps maturity in an
organization.

Capgemini	DMM	has	five	levels	of	maturity:	starting	at	Level	1	stage	with	siloed	team,	
manual	and	ad-hoc	processes	to	Level	5	stage	of	highly	matured	“One	Team”	with	
fully automated, dynamic process.

Today

Users

Process

I (IS/TI)

Tomorrow

Users

Process

I (IS/TI)

Target

Users

Process

I (IS/TI)

The Starting
point

Overall Client’s Business Objectives, Sector wide drivers,
External drivers. IT Strategy

Business,
developers,
testers,
Operations

...Using the
process(es) to
develop, test,
train......

..On application,
middleware and
infrastructure

Issues, Risks, Challenges and constraints

The element that constrains
the As-Is to move to the

interim and the To-Be

The programs of change
that are needed to move

the As-Is to the To-Be

A view on the
target future
State

...across all
stakeholders....

....covering
end-to-end
process and...

...technology
landscape

Figure	14:	DevOps	Implementation	Framework	(DIF)

To successfully
deploy DevOps a
plan that covers
people, process
and tools is
needed

20 DevOps - The Future of Application Lifecycle Automation

The	maturity	model	covers	5	Levels	from	Basic	to	Top,	and	3	focus	areas;	people,	
process and tools.

6.5 Level 1: Basic
At the Basic level, the following characteristics are apparent:
People:	Separate	strategy,	design,	development,	testing,	and	live	operations	teams.	
Complete	lack	of	terms	of	references.	No	joint	sessions,	get-togethers.	Teams	focus	
on	their	own	direct	targets	and	objectives	only.	No	joint	or	shared	objectives	and	no	
overall	reward	system.	People	only	feel	accountable	for	their	immediate	area	—	no	
common or overarching ownership

Process: Separate	and	disconnected	processes	are	in	place,	which	are	ah-hoc,	
reactive	and	chaotic.	No	common	end-to-end	process	framework,	no	common	sign	
off	criteria,	or	any	joint	solution	design	characteristics	that	support	appropriate	“–
ilities” (availability, stability, flexibility)

Tools: No	automation	tools,	majority	of	activities	are	manual,	ad-hoc,	and	
unplanned.	No	integration	between	hardware	provisioning,	operating	system	
installation/configuration and middleware/application related provisioning/installation.
No	sharing	of	joint	configuration	information	with	all	information	being	stored	and	
retained in different repositories

6.5 Level 2: Emerging
At	the	Emerging	level	the	following	characteristics	are	apparent:
People: Limited changes to basic — still very siloed and separate teams with no
single team/person taking end-to-end responsibility. Developers mainly focus on
functional requirements with very limited focus on non-functional requirements.
However	there	is	the	emergence	of	some	shared/joint	touch	points,	where	some	
developers and operational staff engage

Traditional Silo’ed Organisation | separate, ah-hoc and chaotic processes | separate
tools with many manual activities | typically very long release duration and high outages

Level 1: Basic

Emergence of joint teams | starting to establish connected processes | some
automation & isolated tools | medium release duration & reduced outages

Level 2: Emerging

Joint and shared objectives | dev2ops connected lifecycle | limited manual
processes | low release duration & significantly reduced outages

Level 3 : Co-ordinated

Co-authoring of solutions | one lifecycle | no manual processes +
end2end managed environments

Level 4 : Enhanced

One Team | dynamic process | near instant deployment of
changes | fully automatic | no dev related outages

Level 5 : Top Level

Figure	15:	Capgemini’s	DevOps	Maturity	Model	(DMM)	

Seldom can
Devops be
implemented in
one go - a step-
by-step approach
is needed

21

the way we see itInfrastructure Services

Process: Limited changes to basic — there are some attempts to establish better
managed processes, however these are restricted to specific environments only, i.e.
covering	development	or	UAT	(user	acceptance	testing)	only	

Tools:	Some	minor	changes	to	Basic,	mainly	targeted	at	developing	automatic	
scripts covering hardware and operating system related aspects. As per Basic, these
are	mainly	targeted	at	the	development	environments.	Most	other	environments	such	
as	testing,	training,	SIT	(system	integration	testing)	are	being	manually	installed.

6.5 Level 3: Co-ordinated
At the Co-ordinated level, the following characteristics are apparent:
People:	Mainly	siloed	organizations,	however	lead	architect/lead	designer(s)	increase	
their	scope	to	also	include	operational	aspects.	Joint	sessions	are	held	to	increase	
wider visibility for instance, key operational staffs are actively engaged in the design
and build phase. Developers are also measured on operational characteristics

Process:	Still	mostly	separate	processes	covering	the	entire	solution	lifecycle,	
however	there	are	some	joint	process	points	where	development	and	operational	
aspects	are	jointly	covered.	Better	understanding	of	the	entire	environment	setup	
and characteristics

Tools: most of the development environment setup is being created automatically.
Only application related components are manually installed

6.5 Level 4: Enhanced
At	the	Enhanced	level	the	following	characteristics	are	apparent:
People:	Joint	teams	that	cover	the	entire	solution	lifecycle.	Lead	architect	owns	the	
entire solution, including functional and non-functional requirements covering design,
build, test, and run

Process:	Single	overall	process	covering	the	entire	solution	lifecycle	from	design,	
build,	test	to	run.	Clear	visibility	of	all	projects/changes	that	are	at	different	stages,	
and all compliance levels (functional and non-functional). Clear view of the entire
environment setup and characteristics

Tools: most of the development environments, setup, testing and live are being
created automatically. This now covers servers, operating system, as well as most
middleware and application related components

6.5 Level 5: Top Level
At the Top level, the following characteristics are apparent:
People: One team, co-located and extensive collaboration and knowledge sharing

Process:	Single,	overall	process	covering	the	entire	solution	lifecycle	from	strategy,	
planning to design and build, test to run

Tools: All environment setups created automatically from a single repository. This
covers all aspects: servers, operating system, operating system as well as all
middleware	and	application	related	components.	No	manual	processes	in	place	

22 DevOps - The Future of Application Lifecycle Automation

7. Summary
For Capgemini DevOps is a way of collaborating and industrializing using highly
automated approaches to deploy solutions that evolve as fast as your business
needs it. By adopting DevOps an organization can dramatically improve the value
delivered by its business. The team centric DevOps ethos tears down traditional
silos to tightly integrate business, development and operations to drive agility and
service delivery excellence across the entire lifecycle

DevOps is an ‘old’ approach understood and discussed by a relatively small number
of professionals. To master it, companies must apply a much more holistic approach.
With the advent of new technologies and growing demand for faster processes and
better quality, DevOps has acquired new dimensions. Organizations across the
globe have been implementing a full or partial DevOps solution. However, the road
to DevOps is not straight. DevOps is a complex concept with no clear definition or
list of products. It lacks a common vocabulary and capabilities required for DevOps
implementation differ from one environment to the other.

To overcome the challenges we suggest:
1.	 Define a clear target
2.	 Establish	a	clear	transformation	plan
3. Actively manage the plan execution

To get maximum benefit from the DevOps implementation, we recommend focus on
three key areas - change of culture, connection of processes, and common tooling.
This is crucial to reduce development-to-operations costs and minimize change
related outages.

8. Appendix A: References

1.	Capgemini,	Technovision	2016,	https://www.capgemini.com/blog/cto-blog/2015/11/technovision-2016-build-release-run-repeat

2.	Capgemini,	TechnoVision	2015,	http://www.capgemini.com/blog/cto-blog/2014/11/welcome-to-technovision-2015

3.	Gartner,	Hype	Cycle	for	Application	Services	2015,	July	2015,	Betsy	Burton,	Philip	Allega		

4.	Rackspace,	DevOps	Automation	Report,	October	2014,	https://www.rackspace.co.uk/sites/default/files/devops-automation-report.pdf

5.	Gartner,	Cool	Vendors	in	DevOps,	16th	April	2014,	G00262716,	by	Ronni	J.	Colville,	Jim	Duggan,	Jonah	Kowall,	Colin	Fletcher

6.	Gartner,	The	Virtualisation	Scenario:	Servers	&	Beyond,	Philip	Dawson,	2013

7.	http://en.wikipedia.org/wiki/The_Emperor’s_New_Clothes

8.	Gartner,	Seven	Steps	to	Start	Your	DevOps	Initiative,	16	September	2014,	G00270249,	Ronni	J.	Colville

9.	IT4IT	OpenGroup	Forum,	http://www.opengroup.org/IT4IT

10.	The	Visible	Ops	handbook,	http://www.itpi.org/the-visible-ops-handbook-review.htm

11.	Gartner,	G00208328,	Ronni	J.	Colville,	George	Spafford,	27th	October	2010,	http://img2.insight.com/graphics/no/info2/insight_art6.pdf

12.	IDC,	Stephen	Elliot,	http://info.appdynamics.com/rs/appdynamics/images/DevOps-metrics-Fortune1K.pdf

13.	Puppet	Labs,	DevOps	Report,	https://puppetlabs.com/2015-devops-report

14.	The		Agile		Admin,		http://theagileadmin.com/what-is-devops/

For Capgemini
DevOps is a way
of collaborating
and industrializing
using highly
automated
approaches to
deploy solutions
that evolve as fast
as your business
needs it.

23

the way we see itInfrastructure Services

https://puppetlabs.com/2015-devops-report

About Capgemini
With 180,000 people in over 40 countries, Capgemini is one of the world’s
foremost providers of consulting, technology and outsourcing services.
The Group reported 2014 global revenues of EUR 10.573 billion. Together
with its clients, Capgemini creates and delivers business, technology and
digital solutions that fit their needs, enabling them to achieve innovation
and competitiveness. A deeply multicultural organization, Capgemini has
developed its own way of working, the Collaborative Business ExperienceTM,
and draws on Rightshore®, its worldwide delivery model.

Learn more about us at

www.capgemini.com

The information contained in this document is proprietary. ©2015 Capgemini. All rights reserved.
Rightshore® is a trademark belonging to Capgemini.

For more details contact:

Author:

Gunnar Menzel
VP, Capgemini
gunnar.menzel@capgemini.com
0044 870 905 3325

Co-Author:

Andrew Macaulay
Managing Solution Architect
andrew.macaulay@capgemini.com

Contributors:

Ajith NC
ajith.nc@capgemini.com

Ajay Dhanesh
ajay.dhanesh@capgemini.com

M
C
O
S
_G

I_
M
K
_2

01
51

20
7

the way we see itInfrastructure Services

