
DEVSECOPS IN
REGULATED INDUSTRIES

ACCELERATING SOFTWARE
RELIABILITY & COMPLIANCE

03... Executive Summary

04... Introduction

07... Impediments to DevSecOps Adoption

10... Playbook for DevSecOps Adoption

19... Conclusion

TABLE OF CONTENTS

EXECUTIVE SUMMARY

03 - Executive Summary

DevOps practices enable rapid product engineering delivery and
operations, particularly by agile teams using lean practices. There is
an evolution from DevOps to DevSecOps, which is at the intersection
of development, operations, and security. Security cannot be added
after product development is complete and security testing cannot be
done as a once-per-release cycle activity. Shifting security Left implies
integration of security at all stages of the Software Development Life
Cycle (SDLC). Adoption of DevSecOps practices enables faster, more
reliable and more secure software.

While DevSecOps emerged from Internet and software companies,
it can benefit other industries, including regulated and high security
environments. This whitepaper covers how incorporating DevSecOps
in regulated Industries can accelerate software delivery, reducing the
time from code change to production deployment or release while
reducing security risks.

This whitepaper defines a playbook for DevSecOps goals, addresses
challenges, and discusses evolving workflows in DevSecOps,
including cloud, agile, application modernization and digital
transformation. Bi-directional requirement traceability, document
generation and security tests should be part of the CI/CD pipeline.
Regulated industries can securely move away from traditional V cycle
software development to a more agile approach by taking advantage
of DevSecOps.

04 - Introduction

INTRODUCTION

The DevOps movement has its origins in the seminal talk given by
John Allspaw and Paul Hammond of Flickr at the O'Reilly Velocity
2009 conference.[1] They described how they were able to perform
ten deployments per day and their approach became popular
as "DevOps." DevOps can be described as a "business driven
approach to deliver solutions using agile methods, collaboration, and
automation."

DevOps fosters the integration of development and operations
and creates a collaborative professional culture that breaks down
traditional business process bottlenecks. As per a McKinsey report,
the adoption of DevOps practices leads to rapid product engineering
delivery and operations, particularly by agile teams using Lean
practices.[2]

As per Accelerate State of DevOps Report, 2019 adoption of DevOps
practices create elite, integrated teams and leads to improvement in
productivity, e.g., faster time from code change to production, and can
improve time to market for new products or features.[3] It also leads
to faster recovery from production incidents and fewer occurrences
of such incidents. The result is an increase in velocity that can have a
quantifiable and positive business impact.

[1.] https://www.youtube.com/watch?v=LdOe18KhtT4

[2.] https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20

Insights/Beyond%20agile%20reorganizing%20IT%20for%20faster%20software%20delivery/Beyond%20

agile%20Reorganizing%20IT%20for%20 faster%20software%20delivery.pdf

[3.] https://cloud.google.com/devops/state-of-devops/

05 - Introduction

Nearly a decade ago, famous venture capitalist Marc Andreessen
had stated that "Software is Eating the World," meaning that all types
of businesses will ultimately be digital enterprises.[4] This trend is
now visible in all sectors from fighter jets to military drones, medical
equipment like Magnetic Resonance Imaging (MRI) scanners, energy
control systems, and modern automobiles. A modern car can be
considered a computer on wheels with 100 million code lines. In the
future, self-driving cars are expected to run 300 million code lines.

The evolution from DevOps to DevSecOps is at the intersection
of development, operations and security. Cloud and mobile
technologies have created a hyper-connected world that is
increasingly vulnerable to cybersecurity attacks. In practice, security
cannot be added after product development is complete and security
testing cannot be done on a once-per-release cycle basis. Folding
security into the DevOps ethos of incrementally improving software in
smaller, faster builds helps fix defects and security issues much earlier
in the release cycle. DevSecOps addresses the critical areas of making
reliable software, maintaining system integrity and enabling efficient
incident management, governance and compliance.

Times More Frequent Code Deployments

Times Faster Lead Time From Commit to Deploy

Throughput

Elite Performers in Comparison With Low Performers

208x

106x

Times Faster Time to Recover from Incidents

Times Lower Change Failure Rate

Source : State of DevOps Report 2019

Stability
2604x

7x

Figure 1: Elite Performers in Comparison with Low Performer

[4.] https://a16z.com/2011/08/20/why-software-is-eating-the-world/

06 - Introduction

Regulated industries from automotive energy, life sciences, and
industrial manufacturing can successfully adopt DevSecOps best
practices and strategies. While DevOps and DevSecOps practices
emerged from Internet and software companies, they can be used
in other industries, including regulated industries and high security
environments, such as aerospace and defense, government and
military.

07 - Impediments to DevSecOps Adoption

Safety and Security Compliance

Regulated industries have been slow in the adoption of agile, DevOps,
and DevSecOps practices due to their unique, industry specific
challenges.

Regulated Industries have to meet complex compliance requirements
with multiple regulations and standards. This is the biggest challenge,
directly affecting the product release velocity and productivity.

Based on a survey done by DZone across a global audience of
developers, architects, and software engineers, the perceived factors
impacting the organization's security assurance approach include
regulatory requirements, customer requirements, including security
requirements and security awareness across the organization.[5]

Organization Security Assurance Factors

1-99

15.6% 15%

40% 40%
45%

15.4%

20.9%

14.7%

18.7%23%

33.6%

100-999

Regulatory Requirements Customer Requirements

Security Awareness Orgs

1,000-9,999 10,000

Figure 2: Organization Security Assurance Factors

IMPEDIMENTS TO
DEVSECOPS ADOPTION

[5.] https://dzone.com/trendreports/devsecops-1

08 - Impediments to DevSecOps Adoption

Traditional Development Practices

Across industries, software complexity is increasing exponentially,
while development productivity is stagnating. McKinsey expects that
by 2030 software complexity in the automotive sector will increase 5x,
while software development productivity will only be 2x.[7]

Regulatory requirements top the list. Regardless of organization size
(100+ to 10,000+), the focus on regulatory requirements (37.2%)
is higher; however, the security awareness focus still remains low
(17.5%).

Aerospace and Defense companies, in particular, need to comply
with DO-178C, ED-12B safety standards. Similarly, Automotive
companies need to comply with safety standards like Motor Industry
Software Reliability Association (MISRA) and ISO 26262. Life sciences
companies in the United States need to comply with the US Food and
Drug Administration (FDA) Code of Federal Regulations (CFR) and
other regulatory standards like IEC 60601, ISO 13485, and ISO 14791.

Any compromise in safety standards can lead to drastic consequences
with respect to regulatory bodies or customers. For example, Boeing
tried to circumvent the problems in the airframe of 737 MAX 8
by relying on Maneuvering Characteristics Augmentation System
(MCAS) software. However, the 737 MAX 8 product suffered two
major air crashes in the recent past.[6] New technologies or practices
that are adopted must not only make safety and security top
business priorities but must also incorporate end to end security and
regulatory requirements along with traceability.

Keeping software and systems secure is the highest priority for any
organization. As companies connect enormous numbers of devices
and develop ever more complex data structures, cybersecurity
becomes increasingly important.

The proliferation of mobile and cloud computing technologies has
expanded cybersecurity attack surfaces and has increased security
risks. By 2022, the mobile attack surface width for attackers will be
6 billion. Further, the use of third party and opensource software
requires that these components are not vulnerable.

[6.] https://www.bbc.com/news/business-50177788
[7.] https://www.mckinsey.com/industries/automotive-and-assembly/ourinsights/the-case-for-an-end-to-
end-automotive-software-platform

09 - Impediments to DevSecOps Adoption

Platform Dependency

The same aircraft, vehicles, or medical devices need to be supported
for many years, leading to a huge legacy codebase and complex
branching strategy. Lack of visibility into real world production
environments leads to development environments being inconsistent
with runtime environments. Moreover, there are resource constraints
with less room to compensate for hardware (CPU or memory)
variations. Reducing hardware dependencies, accelerating test
automation and providing production like test environments
repeatedly and reliably, without compromising security, is difficult, if
not impossible, to achieve without adopting a DevSecOps approach.

The aerospace and automotive industries typically use Model Based
Software Engineering in V-cycle SDLC. V-cycle provides simplicity and
ease of use but is not well suited for agile processes. It works well for
small projects, but there is an increased risk that defects will not be
found early sufficient for massive projects. Thus V-cycle is inflexible
and encourages a rigid and linear view of software development
similar to a legacy waterfall SDLC. The long development cycles and
low level of test automation make the process less flexible in the face
of change, setting aside the implicit, slower release cadence.

Similarly, in life sciences, there is a new desire to leverage advanced
analytics, automation, and the cloud to increase productivity and
improve the quality of decision making.

Agile Workflow with W-Model

Adoption of agile planning and development processes is the
first step in the road to DevSecOps. DevSecOps can be done with
waterfall or V-cycle but will not deliver full benefits under a V-cycle
approach.[8] Moving from a traditional V-model to a hybrid W-model,
which embodies the Agile spirit of working on small increments of
requirements, is a key enabler for DevSecOps in regulated industries.

PLAYBOOK FOR
DEVSECOPS ADOPTION

For an organization to successfully introduce and adopt DevSecOps
practices, it is important to be aware of the challenges and have a
playbook of potential solutions for various scenarios. There is a set of
proven, repeatable plays for adopting DevSecOps at enterprise scale
in regulated industries.

[8.] https://en.wikipedia.org/wiki/V-Model

11 - Playbook for DevSecOps Adoption

Figure 3: W-Model for Agile Workflow

Sprint 1 Sprint 2 Sprint N

Initial
Specification

Requirements
Modeling

System Design
Modeling

SW Architecture
Design

Component
Software
Design

Implementation
(Auto-generated

+ Manual)

Product

Acceptance
Test &

Certification

System Test

Integration,
Verification,

Validation (SiL, HiL)

Unit Test

Implementation
(Auto-generated

+ Manual)

Implementation
(Auto-generated

+ Manual)

Unit Test
Component

Software
Design

Integration,
Verification,

Validation(SiL, HiL)

SW
Architecture

Design

Unit Test
Component

Software
Design

Integration,
Verification,

Validation(SiL, HiL)

SW
Architecture

Design

Backlog planning can be done using traditional tools like Rational
Dynamic Object Oriented Requirements System (DOORS) or using
modern Agile project management tools, such as Jira. Along with user
stories for features, non-functional safety and security requirements
can be managed and tracked using agile project management tools.
Instead of having longer iterations following a V-model SDLC, a
DevSecOps approach enables organizations to plan shorter iterations,
i.e., agile sprints, and to build software incrementally, including
automated safety, security and compliance verification.

Initial sprints in a DevSecOps approach focus on requirement
modeling and system design modeling which are iteratively
refined based on feedback from automated tests. In each sprint,
implementation of particular components or features includes
component design, implementation, unit and integration testing,
security and compliance verification.

12 - Playbook for DevSecOps Adoption

Continuous Integration Enabled Version Control System

Continuous Testing

Legacy version control systems like Clearcase are not well suited to
Continuous Integration/Continuous Delivery (CI/CD) pipelines and
have limited integration capabilities with respect to third party tools.
Migrating to modern version control systems like Git or Bitbucket
enables integrating with modern CI/CD pipelines. Using DevSecOps
tools, code reviews can seamlessly integrate with version control.
Code that is autogenerated from requirements or design models can
be compiled and stored in or retrieved from artifact repositories using
simple Representational State Transfer (REST) APIs.

The long duration of support for different platforms leads to legacy
codebases and complicated branching models. Delays in merging
code changes from a feature or release branch to main or version-
specific branches can lead to frequent merge conflicts resulting in
unnecessary effort to resolve the conflicts. Branching strategies that
leverage modern source control systems reduce merge conflicts and
save time.

For example, in a typical DevSecOps approach, a GitFlow strategy is
used to prevent conflicts in the master branch.[9] Feature or release
branches are frequently merged back into the master branch, which
is used to build release artifacts. GitFlow branching model defines
a central master branch and a parallel develop branch representing
the latest code changes, used for nightly or weekly builds that serve
as gates for building promotion and release. After stabilization, the
development branch's changes are merged into the release branch
and tagged with a release number. The develop branch for the next
version is then forked from the release branch.

Automated testing across different CI/CD pipeline stages is crucial
to obtain immediate feedback on the risks associated with a software
release candidate. Since automated testing is executed continuously,
safety, security and compliance risks can be mitigated from
progressing to the next stage. Security and compliance requirements
are integrated directly into the build promotion criteria. Different
stages of automated verification lead to better quality, test coverage,
faster release cadence and provide traceability to safety, security and
compliance requirements:

[9.] https://nvie.com/posts/a-successful-git-branching-model/

13 - Playbook for DevSecOps Adoption

Static Code Analysis: Static code analysis reveals potential
vulnerabilities such as null pointer problems, buffer overflows,
memory leaks, division by zero, etc. Compliance with standards
like MISRA and DO 178C can be verified as part of static analysis.
In a DevSecOps approach, automated scripts are used to run static
analysis from the CI orchestrator based on a trigger from the source
control system, e.g., the result of a merge. If threshold levels are set
for the number and severity of warnings, the pipeline can be halted if
the threshold is reached.

Software Composition Analysis: Increased use of third-party
and opensource software requires a thorough assessment of any
associated vulnerabilities. Software Composition Analysis (SCA) tools
evaluate third-party and opensource components to create a package
bill of materials, which provide insights into third-party software and
show vulnerable areas of code along with risk severity levels.

Unit Testing: A CI orchestrator can be used to automatically trigger
unit tests when source code changes are committed to verifying
that the individual components perform as designed, including
verification of safety, security and compliance requirements at the
component level. Stubbing or mocking can be used to simulate
complex scenarios in virtualized environments independent of the
target hardware platform.

Code Coverage: For regulated software, the aim should be to get
100% code coverage since there are often mission-critical safety
and security concerns. Test cases can be correlated with code
coverage report to assess the completeness of testing. Advanced
code coverage reporting at the unit test level supports KPIs like line,
function, statement, MC/DC and other empirical measures of code
quality, security and compliance.

Integration and Functional Testing: Automated integration and
functional testing verify the integration of different units of a module
within the flow of CI/CD pipeline, along with upwards or downwards
compatibility of components, e.g., at the API level. Test plans can be
automatically generated from a system model and can be further
augmented by additional test plans or AI/ML based test case
selection and prioritization. Virtual prototypes and simulations like
software-in-loop and hardware-in-loop can also be used to verify CI/
CD pipeline flows.

14 - Playbook for DevSecOps Adoption

Figure 4: Automated Security Checks in CI/CD Pipeline

Continuous Security Testing

Integrating security into DevOps can speed up software releases
without compromising controls or increasing risk. Continuous
security testing verifies that systems and applications are analyzed for
vulnerabilities in a continuous cycle.

A DevSecOps approach integrates safety, security and compliance
verification at appropriate points in the SDLC. Security requirements
and best practices are factored into all elements of product
development, from the code itself to the infrastructure it runs on.

CI/CD Pipeline

Penetration
Testing

Threat
Modeling

01

02

03 04

05

06

Secure
Coding

Guidelines

Static Analysis
Software

Composition
Analysis

Vulnerability
Testing

01
Risk based software
development approach to
uncover external risks and
identify potential vulnerabilities

Threat Modeling

02
Use industry coding standards
like CWE, OWASP, CERT, MISRA
for complying with established
best practices

Secure Coding Guidelines

03
Identify all the open source in
codebase and map that
inventory to a list of current
known vulnerabilities

Software Composition Analysis 06
Simulated attack to identify
exploitable weaknesses as well
as strengths, enabling a full risk
assessment to be completed

Penetration Testing

05
Identify potential vulnerabilities
to evaluate the quantum of risk

Vulnerability Testing

04
Scan source code to reveal
potential vulnerabilities and
ensure compliance with
standards like DO 178B/C,
MISRA

Static Analysis

15 - Playbook for DevSecOps Adoption

Threat Modeling: In the planning phase, what security issues should
be addressed in the next few sprints should be decided. Secure by
design principles in the design phase uses threat modeling, data flow
diagrams, and trust boundaries to uncover risks and identify potential
vulnerabilities. Threat modeling can be done using techniques like
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of
Service, and Elevation of privilege (STRIDE), and is used to document
key assets and risks thoroughly and systematically.

Secure Coding Guidelines: Select tools can integrate within the
development environment, IDE and help in complying with different
coding conventions prescribed by industry forums like OWASP, CWE,
CERT, MISRA.

Software Composition Analysis (SCA): SCA can be used to enforce
the organization's opensource software policies and to create a list of
third-party software, e.g., libraries or SDKs, which must be monitored
for vulnerabilities. For example, an Apache Struts vulnerability was
responsible for the Equifax data breach in 2017.

Static Analysis: IDEs can be configured with static analysis tools
that can immediately run during compilation to discover potential
vulnerabilities and error-prone codes.

Vulnerability Testing: During the integration testing phase,
vulnerability testing can find potential vulnerabilities and estimate the
magnitude of risk.

Penetration Testing: During functional testing, attacks can be
simulated to identify exploitable weaknesses and understand
strengths better, facilitating comprehensive risk assessments.

Integrating security checks throughout CI/CD pipeline helps in fixing
flaws as you write code. DevSecOps follows a fail fast principle so
that, at any stage of the CI/CD pipeline, testing, or build promotion
process, various kinds of security vulnerabilities can be found and
fixed before vulnerabilities appear in a release.

16 - Playbook for DevSecOps Adoption

Requirements Traceability

Bi-directional requirements traceability is essential for safety, security
and compliance. Requirements traceability describes the life of a
requirement both forwards and backward. Bi-directional requirements
traceability ensures coverage of requirements in design and code.
Similarly, there is coverage of design and code in the requirements.

While traditionally it is either done manually, e.g., using Microsoft
Excel spreadsheets, or using tools like DOORS, in a DevSecOps
environment, requirements traceability can be automated such that all
stakeholders can view and collaborate on changes across the SDLC.

Requirements are maintained in agile backlog as user stories and
tasks. While creating system design and component design, links
object models, data models and sequence diagrams to user stories
and requirements.

Automatic code generators provide the ability to trace back directly
to the individual parts of the design model from which the code was
generated. Source code and unit test code can contain user story IDs
or tags and references to design models. Automated scripts can link
user story to code changes on code commit.

Test automation tools can be integrated with a common test asset
management tool or repository where all test scenarios, test scripts
and associated results can be stored so that traceability can be
established for code changes, requirements and defects.

After deploying to production, defect IDs can be mapped back
to requirements in case of a defect or incident. The generated
documentation can contain a reference to the requirements and
design sections.

User
Stories

Source
Code

Tasks

Requirements Dev & Build
Unit & Integration

Testing
Functional

Testing

System &
Acceptance

Testing

Unit/Integration
Tests Functional

Tests

Deliverable

DocumentsCode
Coverage

Defects

Figure 5: Bi-directional Requirement Traceability

17 - Playbook for DevSecOps Adoption

Documentation Generation

Compliance with DO-178C / ED-12C

Rather than creating comprehensive documentation up-front,
incremental documentation can be generated in every sprint and
documentation tasks can be automated in the CI/CD pipeline. Inputs
can include requirements models, system models, component
design models, test plans, or source code. Document generation
tools like Doxygen can extract comments from source code to create
documentation. In this manner, documentation remains consistent
with source code even when high velocity code changes are made.
Additional documentation can always be created manually.

DevSecOps can help in compliance with regulatory standards, such as
the DO 178C or ED 12C safety standards in the Aerospace industry.
Compliance as code brings team, auditors, project management office
on the same table, and the development and operations team.

Manufacturing processes contain policies to ensure that end products
exhibit the required quality and security characteristics. The software
should be developed in accordance with policies that clearly state
quality, safety, security and compliance goals. System and component
architectures should be evaluated automatically for compliance with
policies.

Test automation and source code comments can be used to enforce bi-
directional requirement traceability. Performing data flow analysis, static
analysis, unit testing and peer review ensures that source code complies
with specifications and requirements. Automated test cases can be used
to check compliance and test cases can also be used to demonstrate
safety, security and compliance to auditors. Performing extensive
code coverage ensures that requirements have corresponding
implementations and helps to map code to requirements.

Requirements, architecture, design and software components should
be verified using simulations and prototypes wherever possible.
Simulations like requirement-in-loop, model-in-loop, software-in-loop
and hardware-in-loop accelerate verification and validation for safety,
security and compliance implementations.

18 - Playbook for DevSecOps Adoption

Continuous Delivery Pipeline

A central Continuous Delivery pipeline enables software deployment
along with continuous security verification through automates testing.

The pipeline shown above is enabled by a CI/CD orchestrator like
Jenkins on code commit. After performing automated unit testing,
generated binaries are versioned, tagged and stored in an artifact
repository, such as JFrog Artifactory.

Deploying binaries in test or staging environments leveraging
simulations like software-in-loop, hardware-in-loop accelerates
automated functional testing. Vulnerability testing and Penetration
testing are then followed by system testing to verify end-to-end test
scenarios.

DevSecOps implies not only shift-left of testing but also shift-right
of feedback. After performing different testing types, any defects,
suggestions, or enhancements can be automatically recorded in tools
like Jira, e.g., stories or tasks can be created automatically based on
test results.

Issue, Project Tracking

Sprint Planning
& Feedback

Requirements
Modeling

Compliance
Testing

System
Testing

Vulnerability &
Pen Testing

Functional
Testing

Staging
Deployment

Design Modeling
&

SW Architecture

Threat
Modeling

Coding &
Unit Testing SAST, SCA

B
uild

 &
 Packag

ing
System Modeling

System Testing VAPT Functional Testing Virtual Prototype

Document Gen. Threat Modeling Tools Code & Unit Testing Tools SAST, SCA

Artifact
RepositoryDevSecOps

(Requirements Tracing)

Figure 6: DevSecOps CI/CD Pipeline

19 - Conclusion

Regulated industries like Aerospace, Defense, and Automotive,
typically follow traditional development practices like V cycle with
manual testing and low software reusability. Hardware dependencies
and long support contracts have led to a huge legacy codebase with
siloed software development teams. Regulated software requires
compliance to safety standards like DO-178B/C, ED-12B, MISRA, ISO
26262 and security standards like DO-326A, ED-202A, SAE J3061, etc.

Adoption of DevSecOps practices in regulated industries can
accelerate software delivery, reducing the time from code change
to production deployment or release while reducing security risks.
Rigorous, automated security testing, which is key to adopting
DevSecOps, can also validate compliance requirements. Bi-directional
requirement traceability, document generation and security tests can
be done as part of the CI/CD pipeline.

With this in mind, Capgemini Engineering has been developing a
range of software frameworks that can help clients adopt and improve
DevSecOps implementation by performing a number of activities
related to CI/CD pipelines: automated testing, simulation, safety,
security and compliance verification. Combined with our managed
DevSecOps platform, we can free up clients' resources and bandwidth
from routine tasks to focus instead on creating high value features and
new, innovative capabilities.

CONCLUSION

About
Capgemini

Capgemini is a global leader in partnering with companies to transform and
manage their business by harnessing the power of technology. The Group is
guided everyday by its purpose of unleashing human energy through
technology for an inclusive and sustainable future. It is a responsible and diverse
organization of 270,000 team members in nearly 50 countries. With its strong
50 year heritage and deep industry expertise, Capgemini is trusted by its clients
to address the entire breadth of their business needs, from strategy and design
to operations, fueled by the fast evolving and innovative world of cloud, data,
AI, connectivity, software, digital engineering and platforms. The Group
reported in 2020 global revenues of €16 billion.

Learn more about us at

www.capgemini.com

For more details contact:

engineering@capgemini.com

M
ar

ke
ti

n
g

_2
4

/0
3

/2
0

2
1

_S
h

iv
an

i S
o

o
d

The information contained in this document is proprietary. ©2021 Capgemini.
All rights reserved. Rightshore® is a trademark belonging to Capgemini.

