
CODE QUALITY ANALYTICS
CodeVox® - Listen to voice of your code to unlock untapped potential

Overview
Ensuring and maintaining code quality with a rapidly
growing software team is a huge challenge. Code quality
improvement requires a well-developed strategy and
adhering to it throughout the project’s lifecycle. If left
unaddressed, it will be only a matter of time before it
causes problems and leads to great financial losses. Many
software projects struggle to move forward because
the code base becomes unstable and difficult to develop
further. Technical debt is a term in software development
that implies additional rework caused by poor source of
code quality. Ignoring the periodical maintenance and
refactoring of code can create huge technical debt during
long projects.

2

Maintaining high code quality is necessary for:
• Robust software
• Sustainable program
• Easy to maintain and increased readability
• Lower technical debt.

Code quality is subjective, and it varies from team to team.
This point of view analyzes various code quality practices
and aspects of applying analytics and machine learning
techniques to improve software code quality.

• Unit Testing
• Code Reviews
• Defect prevention techniques,
 check list
• Static Code Analysis
• Dynamic Code Analysis
• Impact Analysis
• QA Testing

Shift-left initiatives have helped
organizations to invest and benefit
more on pre-commit code quality
techniques such as unit testing, code
reviews, use of static code analysis
data, defect prevention check lists, and
more. However, a recent GitLab survey
that targeted developers and engineers
found that testing is responsible for
more delays than any other part of the
development process.

Code quality analysis techniques
Most analysis tools operate on source code. The quality of source code is a key factor for a software development and its
continuous monitoring is an indispensable task in the project. A set of practices has been followed by various organizations for
the last four decades. The methodologies have not changed but are improved by continuous learning and adapting various tools
and technologies. Figure 1 depicts the code quality analysis techniques that are widely adopted by most of the organizations.
The proactive techniques that are carried out before each commit, i.e. thorough checking of software code before it changes
into a source code repository are grouped as pre-commit code quality techniques. The techniques that are used after the
commit are post-commit code quality techniques.

3

Figure 1 – Code Quality Analysis Techniques

Development

Self-Review

Unit Testing

Static Code Analysis

Code-Review

Sanity Check

Commit

Build Veri�cation Test

Integration Test

Dynamic Code Analysis

Impact Analysis

New Feature and
Regression Testing

Pre - Commit

Post - Commit

Co
st

Ea
sy

 d
e-

in
te

gr
at

io
n

of
 b

ad
 �

x

Activities such as manual impact analysis, identifying the right set of test cases to execute, inadequate code reviews, and unit
testing, and the non-deterministic nature of system are the key reasons for the testing delay. Testing is an important activity
that ensures code quality, but the results are deferred till the end of the cycle.

Source: GitLab – 2019 Global Developer Report

4

Graph 1 - Most delays encountered in the development process

Code Review

Deployment

Code Development

Planning

Testing

0 10 20 30 40 50 60

24

29

30

34

49

5

In a nutshell, there’s a lot room for improvements to overcome
current limitations, particularly:

• Decisions based on sampling of data – often the lack of band
 width and tools results in incomplete analysis
• In the absence of collective analysis approach, decision
 making on few inputs can be misleading
• Power of time, series of data – currently, trends and patterns
 are not mined or underutilized
• Code smells are assumed to indicate bad design that leads
 to poor code quality; code and design smells play a key role
 during impact analysis

• Dynamic code analysis (DCA) tools create a huge amount of
 data which may also contains a good amount of noise.
 Muting the noise and mining meaningful information out of
 DCA output is a challenge
• SME knowledge is limited to specific areas; it is distributed
 among multiple SMEs and is inconsistent
• Need for a system to provide quick impact analysis
 recommendations
• Untapped benefits of mining software repositories
• Inadequate utilization of the computing power, emerging
 data analytics, and machine learning advancements.

Opportunities to overcome the code quality technique challenges

A summary of various aspect of code quality techniques

Methodology

Unit Testing Pre-commit Unit testing tools

Code Reviews

Static Code
Analysis

Build Varification
Test

Integration Test

Dynamic Code
Analysis

Impact Analysis

QA Testing

Pre-commit

Pre-commit

Pre-commit

Pre-commit

Pre-commit

Pre-commit

Pre-commit

Auto-generation
of unit test

Analytics on time
series data

Dynamic build
veri�cation test

Automated
work�ow, to use
more often

Automated
impact analysis

Automated test
selection and
prioritization

Availability of
SME bandwidth

Manual review
of SCA reports,
Stand alone
data

Unimpactful,
Static set of test

Unimpactful with
long duration

Manual, e�ort
intensive, person
dependent,
incomplete due to
unavailability of
bandwidth

Test selection
and prioritization

Extensive

Manual review
of SCA reports,
and corrective
actions

Low

Extensive

Extensive

Code review
check lists,
Automated code
review tools
like DeepCode

SCA tools

DCA tools

Tools and Aids ChallengesStage E�orts Opportunities

Data sources around source code
Data is the new oil, a huge amount of data is being generated, stored, and maintained over years within the software code and
around it. Following are the type of the data in and around source code:

• Behavioral data (commit history)
• Attitudinal data (code, design review)
• Interaction data (dynamic code analysis, code check in comments, defect notes)
• Descriptive data (code quality attributes like defect density, etc., self-declared information).

Figure 2 represents a possible set of data sources around source code that represent an untapped gold mine of insights.
Most of the code quality techniques look at the content of the data for deriving insights. Content-specific quality analysis is
programming-language specific, person dependent, time intensive, and derives a very limited insight. Along with content,
other non-content aspects derived from meta data around code help get the complete picture of code quality. For example,
commit logs, a behavioral data of source code helps to derive insights such as change patterns, developer acquaintance to
the changed code. These features (characteristics or properties are referred by features or input variables in data science) are
simple and capable of determining the quality.

6

Existing techniques use any of the data sources in isolation. Factoring features referred as code quality features derived from
multiple repositories that provides recommendations with higher accuracy. Code quality features can be categorized into
following categories:

Change
Features that
define change

patterns
People

Features derived
from people

metrics

Violation
Violation

factors derived
by static code
analysis tools CodeSmells

Code smells
that leads

to defective
state

Process
Features
related to
process
metrics

Churn
Features to
deal with

quantity of
change

Temporal
Features

derived based
on time and

schedule
aspects

Figure 3 – Code Quality Features

Figure 2 – Data sources, a goldmine

Code Smells

Defect Data

Review Comments

Developer

Build Management System

Source Code Content

Dynamic Code Analysis Data

Transaction Data

Static Code Analysis Data

Requirement, Use Cases

Unit Test Results

0 0 0 1 0 0 0 10 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0

Data Sources

CodeVox
Capgemini’s CodeVox solution listens to the voice of your code and related artifacts. Leveraging analytics and machine learning
CodeVox:

• Factors data from multiple repositories such as source code, code reviews, project management, defect management, and
 static code analysis
• Establish the linked data across multi-silo repositories
• Extract patterns from historical data
• Derive 50+ change, churn, temporal, code smells, violation, and people metrics which are unique value propositions of CodeVox
• Implement self-learning riskier release code/component predictor model using analytics and machine learning
• CodeVox model can be invoked on-demand or scheduled to get the real-time recommendations on riskier components and
 files.

7

Analytics and machine learning for code quality
An analytics and machine learning based system applies algorithms to data and uses machine learning models to make
intelligent decisions automatically based on discovered relationships, patterns, and knowledge from data. Algorithms such as
regression, classification, clustering are used to extract knowledge, patterns, and relationships. Mining prior experience helps to
identify dominant patterns, these learnings or patterns can be used as predictors for a future outcome.

In the absence of an automated system, the architects, subject matter experts (SMEs) might be using a set of heuristics, mental
shortcuts manually to assess code quality. These heuristics can be mined via a heuristics mining framework and can be
automated via an analytical model. The idea is not to replace the SME intelligence but to augment and accelerate SME decision
making.

®

Pre-assessment

Data Preparation
Feature Engineering

Model Training & Evaluation

Scoring, Performance,
Monitoring, etc.

Modelling Data Sources

Start

End

Change
Process

People

Churn

Code Smells

Temporal

Violation

Commit logs
Developer pro�le
Change metrics
Requirements data
Release data
Source code (content)
Source code - defect
Static code analysis attributes
Dynamic code coverage data

Data
Acquisition and
Understanding

Implementation
of best selected

model

Business
Understanding

The above picture illustrates a high-level overview of CodeVox modelling. To know more about CodeVox reach out to us.

Conclusion
Code quality improvements can be achieved by applying analytics and machine learning on top of the content and meta data
of code along with data coming from other related repositories. Recommendations from mining only content have provided
very little accuracy (between 20–30%) and recommendation based on code, meta data, and other related repositories achieved
70–90% accuracy. In general, applying analytics and machine learning on code and code-related artifacts helps organizations to
achieve quicker releases and better code quality. The recommendations coming from automated impact analysis increase the
code quality with following benefits:

• Developing and running small unit tests for the risky components/files
• Multi-layer code reviews done for hot files
• Dynamic build verification tests
• QA teams focus test on the high-risk areas
• Corresponding test cases execution cadence have increased for hot files
• Improved quality with early deduction of defects.

Recommendations coming from analytics and machine learning models augment teams to take quicker decisions and they are
not a replacement for human intelligence. Frequent auditing of effectiveness of the models with statistical parameters such as
precision, recall, F-measure and enhancing models with missing heuristics will improve the correctness of the models.

Reference
1. GitLab – 2019 Global Developer Report, https://about.gitlab.com/developer-survey/
2. World Quality Report 2019, https://www.capgemini.com/in-en/research/world-quality-report-2019/

Vivek Jaykrishanan
Sr. Director, Product and System Testing

Digital Engineering and Manufacturing Services

Jagadeesh Venugopal
Principal Architect, Product and System Testing

Digital Engineering and Manufacturing Services

Authors

8

About
Capgemini

About Capgemini’s Digital Engineering and
Manufacturing Services
Capgemini’s Digital Engineering and Manufacturing Services brings together deep domain expertise to lead the convergence of
Physical and Digital worlds through technology, engineering and manufacturing expertise to boost our clients’ competitiveness.
A recognized leader with over 10,000 engineers across the globe and 30+ years of experience, Capgemini’s comprehensive port-
folio of end-to-end solutions enables global companies to unlock the true potential of their product portfolios and manufacturing
efficiencies.

To learn more please contact:

marketing.dems.global@capgemini.com

Capgemini is a global leader in consulting, digital transformation, technology and engineering services. The Group is at the fore-
front of innovation to address the entire breadth of clients’ opportunities in the evolving world of cloud, digital and platforms.
Building on its strong 50-year+ heritage and deep industry-specific expertise, Capgemini enables organizations to realize their
business ambitions through an array of services from strategy to operations. Capgemini is driven by the conviction that the
business value of technology comes from and through people. Today, it is a multicultural company of 270,000 team members in
almost 50 countries. With Altran, the Group reported 2019 combined revenues of €17billion.

Visit us at

www.capgemini.com

GET THE FUTURE
YOU WANT

