
The definitive guide to intelligent apps

The digital CIO’s handbook

The app-modernization manual

Table of contents

•	PART I: DISCOVER | THE FUNDAMENTALS OF BUILDING INTELLIGENT APPS 4

What is app modernization? 5

Setting the strategy for app modernization 6

Approaches to application modernization 9

•	PART II: TRANSFORM | MODERNIZING ACROSS TECHNOLOGY, PROCESSES, AND PEOPLE 16

Architecture transformation: 18

Embracing a platform approach 20

Taking a phased approach to modernization 22

Going cloud-native to get results 24

Microservices: The foundation of cloud-native development 26

Technology transformation

Building a foundation for digital manufacturing in the cloud 28

Rewrite once, run anywhere: Choosing the right containerization approach 30

Why embrace serverless? 32

Improving crops with cloud-powered DNA analysis at Corteva 34

How to become an integrator and join the API economy 36

Reinventing a wireless carrier with a platform for the future 38

Organizational transformation

Shifting from a project-based to product-based development 40

•	PART III: OPERATE | DRIVING VALUE FROM A MODERNIZED ENVIRONMENT 42

Leveraging cloud-native managed services for long-term benefits 45

Cloud-native managed services done right 46

Embracing the POD model for ADM 48

Scaling beyond modernization 49

2 The app-modernization manual

Introduction

Companies across every industry are
transforming to adapt and succeed in
today’s fast-paced and increasingly
digital world. IT plays a critical role in
this environment: helping deliver
breakthrough customer experiences,
enabling always-on innovation cycles,
and responding with unprecedented
agility to marketplace changes.

But to enable digital business, you need
to transform your approach to the apps
that are at the core of your operations.
Only then can you respond quickly to
customer needs and deliver at the speed
of ideation.

Modernizing means transforming
existing software, taking an agile
approach to development across
people, processes, and technology, and
embracing cloud-native development,
including microservices and
containerization, hybrid cloud-
integration, and agile and DevOps
methodologies. It also means rethinking
your approach to application services to
transform it into a powerful driver of
innovation.

App modernization ensures you have
the ability to execute quickly, respond
and adapt to continuously evolving
market conditions, and pivot to new
business models ahead of the
competition.

In this document, we’ll explore the
three key tenets of successful app
modernization:

Discovery, which includes how to build
the roadmap and business case for
modernization by understanding your
current state

Transformation, which focuses on how
to rearchitect your applications and reap
the benefits of digital agility, with core
transformation pillars including
embracing cloud native, harnessing the
power of APIs, shifting to agile, DevOps
ways of working, and leveraging
POD-as-a-Service (POD) models. We’ll
explore transformation across three
pillars:

• Architecture
• Technology
• Organizational structure.

Operations, which includes a discussion
of how to optimize and scale for
maximum agility and cost savings
following modernization.

3

Part I: Discover
The fundamentals of building
intelligent apps

4 The app-modernization manual

Application modernization is the
process of transforming legacy
software. Broadly speaking, there are
two options for application
modernization: rehosting – or moving
applications from an on-premises
environment to a modern cloud
infrastructure – and transforming, either
by refactoring, rearchitecting, or
replacing with SaaS.

app-modernization manual focuses on
rearchitecting, which is the most
complex approach to application

modernization and, in many instances,
the most beneficial. Subsequent
chapters will dive into the different
approaches and discuss what’s required
to make re-architecting successful.

It’s crucial to remember that application
modernization is not just about a
technical transformation alone. In order
for application modernization to be
successful, organizations must consider
not just technology but the people and
the processes that surround it. In our
experience, application modernization

efforts tend to fail when not enough
attention is paid to updating the
organizational structure, processes, and
skills alongside architecture and
technology updates. Without a cultural
transformation, there is no advantage
of having a modernized platform. For an
application-modernization project to be
successful, cultural transformation
cannot be an afterthought; rather, it
needs to be planned for at the start of
any modernization project.

What is app modernization?

Why app modernization?

It gets organizations out of the
traditional development mindset of
long release cycles and siloed
functions and to a modern mode of
operating where IT is more aligned to
the business, automation is a given,
and applications can be released much
more quickly. With app modernization,
organizations can move from slow,
multi-week deployments to ones that
happen in a matter of days or even
hours.

All application-modernization options deliver the same fundamental advantages: shrinking the in-house footprint to reduce any
associated costs across networking, compute, storage, and backup; reducing costs and making expenditures more predictable; and
improving agility, speed, scalability, security, and reliability. These enable a highly scalable and always-on IT ecosystem where
organizations can focus on growing their core business and launching new and innovative products instead of focusing on IT issues.

Efficiency: 25–70% reduction in platform support

Quality: <1% production code with defects

Continuity: Zero downtime and a serverless provisioning model

Self-healing: 2–10 minutes average failure recovery

Speed: 25–50x improvement in release velocity

Compatibility: No cloud provider lock-in

Flexibility: Increased configurations and infrastructure as code

TCO optimization: Optimize legacy apps to get more out of existing investments

5

Setting the strategy
for app modernization
Understand your objectives

To get started, it’s important to take a
look at the entire landscape to
understand what should be modernized
and what approach is needed.
Understand how people and processes
need to transform alongside the
technology to get the most out of the
investments. This can be done by, for
example, enabling agile, DevOps ways of
working, shifting to product-centric
modes of delivery, and embracing
cloud-native. It’s critical to build in
flexibility and take a strategic approach
to innovation to respond to changing
customer and market needs.

Building the business case
and roadmap

The strategy phase is a critical element
of any application-modernization
project. The value lies in thinking
strategically, becoming a trusted advisor
to business, and planning across
domains. It can help reduce issues like
unexpected delays and ensure optimal
value is delivered for the business. These
are the elements to include when
planning a modernization initiative:

Start with an assessment. It can be a
big task to “see” everything in the IT
enterprise but understanding what’s in
the portfolio goes side by side with a
strategy. An assessment will give you an
in-depth understanding of the current IT
landscape and provide the critical
information that will form the basis for a
strong business case and an outcomes-
oriented roadmap. Gaining visibility into
your application portfolio can help
identify the buckets of strategic
decisions needed, from cloud strategy
to consolidation. It should include
analyses across multiple dimensions,
including application portfolio,
infrastructure, costs, cloud and digital
readiness, and resource allocation. It
helps identify what to eliminate,
consolidate, modernize, replace, or
remove, as well as where to invest in the
future. By aggregating data into an
analytics platform, it’s possible to group
apps across themes to drive stability and
velocity – for example, grouping by
criticality, problem volume, risk, and
cloud suitability.

An important component of a successful
assessment is the decision framework. It
includes the organizational strategy,
vision, and guiding principles to drive
the decision-making process and
provide parameters for how IT will
engage with the business. For example,
as an organization shifts towards agile
and decides whether to be product-
driven or services-driven, a decision
framework will lay out the implications
of the selected choice.

Building the approach. Develop the
business case and roadmap. An
execution roadmap prioritizes initiatives
like application modernization, cloud,
automation, and DevOps by considering
timelines, costs, and findings of the
assessment phase. To build the
roadmap, a good place to start is with
Gartner’s PACE-layered Application
Strategy for aligning with the business
to categorize the value of applications
and the pace of change, as well as on
what to invest and tolerate or eliminate
and consolidate.
When categorizing applications,
organizations need to think about
systems of innovation, systems of
 business differentiation, and systems
of record, as that will have an impact on
your strategy. For example, for
applications that fall into the systems-
of-record and tolerate categories, you’ll
likely need to focus on investing in some
incremental transformation to get them
cloud ready. For systems of innovation
and differentiation that are likely
already on the cloud, you’ll want to
ensure you’re transforming people and
processes to ensure maximum business
agility and responsiveness.

Getting to the right
approach will include
a combination of
workshops, interviews,
assessments, analyses,
and meetings to gain
alignment across the
organization.”

PART I: DISCOVER | THE FUNDAMENTALS OF BUILDING INTELLIGENT APPS

6 The app-modernization manual

The business case includes the financial
rationale behind a transformation,
including cost, savings, and returns. It
provides a forecast for return on
investment and connects IT changes to
business KPIs that ensure ongoing
project funding. To build the business
case, organizations need to first
understand the focus and motivations
around cost savings. They then need to
develop a current state cost model per
app to get to an average monthly cost
per virtual machine and per database
that can be compared with cloud hosting
and drive decisions around IT spend
alignment to business criticality.

Savings from cloud adoption and
modernization include both hard and
soft benefits. Hard savings come from
the right-sized infrastructure,
autoscaling, and elasticity of cloud along
with the reduction in software licenses
(think VMWare or open-source
databases) as well as pay-as-you-go
usage. The soft benefits come from
agility via automation (DevOps and
scaling), personnel savings with less
manual maintenance, reduced risk for
hiring skilled labor, cost and risk
reduction via continuous upgrades,
increased developer productivity
through reuse of standard cloud
services, and the indirect costs of
simplified procurement.

Plan to manage change. A change-
management strategy plans for the
organizational shifts needed to support
technological change. It should include a
target operating model that includes the
make-up of the new organization,
required skills, and roles and

To get started,
it’s important to
take a look at the
entire landscape to
understand what
should be modernized
and what approach is
needed.”

responsibilities. IT transformation
projects aren’t just about technology;
they’re also about people, processes,
and culture. IT leaders need to think
about the skill sets they need and how
existing skills are going to change to
support the future. They need a plan for
upskilling existing teams as well as
recruiting for hard-to-find skills.
Because various components are
required to create a well-structured
plan, the strategy phase is critical to any
transformation program. Getting to the
right approach will include a
combination of workshops, interviews,
assessments, analyses, and meetings to
gain alignment across the organization.
By aligning principles, understanding
the IT enterprise from bottom-up, and
building an initiative roadmap, the
organization is able to manage and track
transformation at an intentional
program level to drive efficiency.

7

PART I: DISCOVER | THE FUNDAMENTALS OF BUILDING INTELLIGENT APPS

8 The app-modernization manual

Approaches to
application modernization
Your approach to application modernization depends on your landscape. It’s not a one-size-fits-all situation, and each approach has
different outcomes and ROI and varies by different business needs. Here, we’ll dive into the possibilities for modernizing your
applications.

Although rehosting doesn’t technically fall into the category of application modernization, it is the first step many companies take
towards modernizing their application portfolios. Rehosting is simply moving an application from its on-premises environment to a
modern cloud infrastructure. Companies choose to rehost an application when they are pleased with its performance and
functionality but need the benefits of an agile cloud infrastructure. They retain the familiarity and functionality of the original
application while reducing their data-center footprint and networking, compute, and storage costs. They also reduce their capital
investment and maintain business continuity. It is the most straightforward of the four options and generally delivers significant
boosts in performance.

Now, let’s shift to true application modernization.

Rehosting

9

Modernization approach 1:
Refactoring

What is it?
Refactoring refers to the process of restructuring code to improve performance without changing its intended
function. Refactoring involves customizing an application so it can run on a cloud platform.

Why do it?
Companies will opt to refactor applications when, as in the case of rehosting, they are basically satisfied with the
functionality but the code needs to run on a more modern foundation, such as a current operating system. With
minimal changes to the underlying structure but no alteration of the software’s functionality, these applications can run
on modern flexible cloud systems. Refactoring applications reduces technical debt, improves performance and
efficiency, cuts costs, and creates code portability where none existed before. As importantly, refactored applications
can receive all vendor software updates, ensuring security standards and performance are maintained. Many
organizations, for example, have machines running Windows Server 2008. Microsoft support for that operating system
is about to expire. With minimal changes to the underlying structure but no alternation of the software’s functionality,
these applications can run on modern foundations and move to flexible cloud systems. Once refactored, applications
can be containerized or leveraged with PaaS services.

How to do it
A partial refactoring modifies only specific portions of the application to enable the migration to the cloud platform,
whereas a complete refactoring modifies applications so they can perform at a much higher level of efficiency and
optimizes them so they can operate at much lower costs.

PART I: DISCOVER | THE FUNDAMENTALS OF BUILDING INTELLIGENT APPS

10 The app-modernization manual

11

PART I: DISCOVER | THE FUNDAMENTALS OF BUILDING INTELLIGENT APPS

12 The app-modernization manual

Modernization approach 2:
Rearchitecting

What is it?
Rearchitecting transforms single-tier architectures into distributed systems in which functions and processes are
divided in a modern cloud implementation. When rearchitecting, applications transform from monolithic to
microservices-based architectures.

Why do it?
Rearchitecting provides the maximum benefits of cloud transformation given that the new versions of applications are
custom designed to align to business requirements and operate with maximum performance and efficiency. This is far
more efficient and more reliable than refactoring.

How to do it
Rearchitecting an application involves the complete remodeling of the application across all layers to incorporate the
latest technologies and architecture best practices. This may involve decomposing a monolithic application into a
number of autonomous microservices or serverless functions and deploying them on private or public cloud platforms.

13

Modernization approach 3:
Replacing

What is it?
There are two choices when it comes to replacing aging, on-premises systems: redeveloping with new code built for
modern cloud infrastructures using current development tools or shifting to SaaS. Replacing is the most labor-intensive
option of the approaches and may involve some level of business disruption.

Why do it?
The replace option is for companies that are in need of a specific function, such as payroll or inventory, but know that
the legacy system is so out of date that starting from scratch in the cloud or moving to SaaS would be the most efficient
option. Companies that rebuild have an unprecedented opportunity to create functionality that exactly matches
current needs and future requirements.

When choosing between rebuilding yourself or going with a SaaS solution, it makes sense to build functions that are
highly proprietary, confidential, or critical to your organization from a competitive standpoint but go with SaaS
solutions when there’s a best-of-breed option available. For example, organizations likely wouldn’t build their own CRM
system, given the availability of powerful existing SaaS solutions. On the other hand, telecom providers may build
back-end solutions for inventory management or digital billing, given the importance of both to retaining a
competitive edge.

How to do it
Replacing an application involves analyzing a suitable SaaS or cloud-native platform that provides enhanced or like-to-
like features from a functional perspective and yet offers all the benefits of cloud. A critical aspect of replacement is
developing a phase-out strategy, migration plan, and reconciliation design and deployment architecture.

PART I: DISCOVER | THE FUNDAMENTALS OF BUILDING INTELLIGENT APPS

14 The app-modernization manual

15

Part II: Transform
Modernizing across technology,
processes, and people
With app modernization, an organization must transform across multiple pillars. To
achieve maximum value, any application-modernization initiative should include a
consideration of architecture, technology, and organizational structure.

16 The app-modernization manual

17

Architecture transformation:
App modernization begins with a technical change, with organizations shifting from
three-tier, tightly coupled, hard-to-change monoliths to a modern, agile, and loosely
coupled microservices-enabled landscape that enables greater flexibility and agility.
The journey starts with having the right architectural framework that incorporates
industrialized design patterns and implements best practices focused on simplifying
application development and maintenance cycles. It includes domain-driven design,
the de facto architecture pattern for cloud-native architecture, that breaks up
complex business domains and monolithic applications into smaller data-driven
microservices and helps define clear boundaries for each context.

It takes an API-first design approach to ensure that the microservices conform
to enterprise-wide consumption and comply with security and governance
requirements. Asynchronous architecture allows reduced dependency on complex
integrations and brings in autonomous behavior that results in parallel builds and
faster deployments. Additionally, architecture is designed for network and system
failures and leverages fifteen-factor design principles rather than the typical twelve-
factor approach to achieve agility, scalability, and operational efficiency.

Technology transformation:
Adopting modern, cloud-native technologies such as containerization, serverless,
microservices, and PaaS are key to achieving maximum benefit from app
modernization. But the massive scale of modernization requires that the technology
foundation go beyond updating functional capabilities to also focus on establishing
DevOps and quality automation pipelines that can continuously bring the
development and maintenance costs down and help improve operational excellence.
Additionally, with app modernization, organizations shift from open-source
technologies with limited re-use and on-premises infrastructure to leading-edge
solutions on three PaaS patterns: traditional, custom, and public.

One codebase, one application

API-first

Dependency management

Design, build, release, and run

Configuration, credentials,
and code

Logs

Disposability

Backing services

Environment parity

Administrative process

Port binding

Stateless processes

Concurrency

Telemetry

Authentication and
authorization

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15

Fifteen-factor design

PART II: TRANSFORM | SECTION 1: ARCHITECTURE TRANSFORMATION

18 The app-modernization manual

Organizational structure
transformation:
 To support the modernized architecture, silos across the business, development,
quality assurance, and testing need to be broken down and replaced with self-
sustaining domain-driven teams. Whereas in traditional development approaches
there are separate resources to support development, infrastructure, and quality
assurance with large teams of 30 or 60 people per project, in a modern approach, the
same resources need to be responsible for development, platform operations, and
automation scripting.

In POD models, a single team of cross-skilled people works closely together across
all aspects of maintenance and development to maximize speed and agility. If a team
owns a feature, it does so in an end-to-end you-build-it-you-own-it model. Each
POD is comprised of a team that includes a product director, scrum master, product
lead, technical product analyst, full-stack developer, backend developer, SDET, and
DevSecOps automation engineers. The POD team works together in an agile, DevOps
model as they develop and maintain applications while making enhancements to
incorporate emerging technologies and reduce technical debt.

In this chapter, we explore each of these areas in more detail to provide a
comprehensive picture of how to successfully transform with application
modernization.

Any application-modernization initiative
should include a consideration of architecture,
technology, and organizational structure.

19

One potential challenge that IT teams face when in a
cloud-native environment is working within a highly
distributed ecosystem with multiple moving parts, such
as microservices and containers. If design patterns are not
followed or implemented correctly, achieving maximum
value can be a challenge. Because of this, we recommend a
platform approach for any organization looking to embrace
cloud-native development.

Why do you need a platform approach?

A platform-centric approach provides a framework with
best practices and proven patterns that have worked not
just within a single organization but within others as well. A
platform is a base set of capabilities and features that provide
the foundation to optimize and innovate within a cloud-
native environment. It can encompass technology elements
as well as processes. For example, we worked with a global
wireless carrier to establish two platforms: one was based on
microservices with a standard technology set and the other a
DevOps implementation containing standard tools, processes,
and technologies. A platform can integrate with partners,
suppliers, and consumers and drive your business capabilities.

From a modernization standpoint, a platform provides the
infrastructure for transforming from haphazard communication
between legacy systems to well-defined reusable services. This
standardization allows a company to react to change faster.
A platform is horizontal and sits outside any specific line of
business, which facilitates standardization that simplifies the
process of making technical changes while promoting efficiency
and scalability. For example, Capgemini worked with an
organization to build a NoSQL datastore when the traditional
online database became a bottleneck. The underlying platform
capabilities, such as the event bus, were essential for the
technical team to make a decision on a solution, pilot it quickly,
and launch to production without an impact on operations.

What should a platform consist of?

A platform is essentially a pre-defined set of APIs and services
that enable and support applications, data, and business
capabilities for the enterprise. It can include operational,
orchestration, data, and network components as well as lead
up to AI algorithms, DevOps tools, and security services.
These pre-defined APIs and services can also be specific to
your business and technology, as in the case of core business
functionalities that are exposed by legacy wrappers for
consumption by the business. A platform also includes a
mechanism for standardizing across lines of business, allowing
specific teams to request features via self-service provisioning.
It also includes a sandbox for trying out new capabilities to
be added.

Should you build or buy your platform?

A platform exists to facilitate the rebuilding of the portfolio
and should improve processes. When thinking about how to
construct a platform, you can opt to build these capabilities
in-house or leverage third-party services like Kubernetes or
PaaS features from a cloud provider.

Technical leaders should look at platform roadmaps to
progressively migrate business operations from existing
systems to platform capabilities. For example, re-architecting
a legacy monolith as PaaS services requires the use of existing
re-usable and production-proven capabilities that maximize
efficiency and reusability. This is, in essence, a shift to a
platform approach, facilitated by the process of application
modernization. In the platform approach, all modernized
capabilities are built to be reused internally and externally,
enabling the move to API monetization.

It’s important to remember that the transformation to a
platform-centric approach will not happen overnight, and we
don’t recommend going for a big-bang migration approach to
a new platform. Rather, we recommend first conducting a pilot
project with a group that embraces change, and then building
from there.

PART II: TRANSFORM | SECTION 1: ARCHITECTURE TRANSFORMATION

Embracing a platform approach

20 The app-modernization manual

21

Initial load

In the initial load phase, a company migrates all available
reference data, user information, and required history
and transactional data from legacy applications to the
new platform. Mapping is important in this phase. This
includes mapping entities from the legacy application to the
modernized equivalents on the new platform, transforming
data from legacy applications to address the domain model
of the new platform, and filling in the blanks or extrapolating
where there are gaps given that the domain model of the new
platform will be a superset of the legacy applications.

State synchronization with legacy systems

A big-bang approach, where you completely replace a complex
system with cloud-native applications, can be a huge risk.
The strangler pattern reduces the risk of a complete failure.
However, running two separate versions of an application
means that an organization needs to know where each feature
is located. Every time a feature or service is migrated, users
need to be updated with the new location. Strangler patterns
facilitate this by creating a routing facade. There are two
options for doing this: modifying monolithic functionality or
using event-choreography patterns.

Modernizing legacy applications can be complex, especially when multiple applications are involved. The most challenging
aspect of modernization is the movement of users and consumers of legacy application services to the new modernized stack.
This includes bringing in new systems during the interim phase, synchronizing data, providing business coverage with fully
serviceable overlapping functionality, and, at times, developing temporary systems and processes for bridging legacy
applications to the new system.

Due to the scope and size of a typical modernization initiative, organizations often must take a phased approach to introduce
the updated platform. In a multi-phase strategy, organizations synchronize the new platform with the legacy applications until
it’s possible to switch over to the new platform and microservices. While enterprises are still in the process of modernizing,
legacy and modernized services will coexist as organizations transition gradually.

This type of phased approach should use a strangler pattern, which is a way of migrating a legacy application incrementally by
replacing existing functionalities with new platform and services in a step-by-step manner. This strategy will require an initial
load phase that ensures all operational and configuration data required for the new microservices to fully operate in production
are available in the new platform. It also requires an overall state synchronization between the new and old systems to maintain
data integrity and data-model dependencies between individual functions.

Phased introduction of modernized services

Taking a phased approach to modernization
Fa

ca
de

Fa
ca

de

Microservice
Microservice

MicroserviceMonolith Monolith

Event pub/sub Event pub/sub

PART II: TRANSFORM | SECTION 1: ARCHITECTURE TRANSFORMATION

22 The app-modernization manual

State synchronization option 1:
Modifying monolithic functionality

The first option for the rollout involves routing current
transactions on the legacy application to the newly
developed microservices. All business logic and southbound
communication are switched off in the legacy application
as the transaction management responsibility shifts to the
new services. This will require selectively switching off the
functionality in the old applications while continuing to write
database transactions to maintain data consistency for the
operations of other functionalities that have not yet been
transitioned to the new application. This approach simplifies
the overall integration between the legacy system and new
microservices platform as it does not require any external
process to maintain data synchronization

State synchronization option 2:
Utilizing event-choreography patterns

While the first option provides simplified integration of new
microservices with the legacy applications, it may also require
significant complex modifications to the existing application.
To circumvent this complexity, organizations can use event-
choreography patterns. In this approach, data is synchronized
between the old and new applications as a non-intrusive,
event-based architecture, which ensures that data consistency
and integrity are maintained during the rollout. Ultimately,
functionality in the old application is switched off once all
services are transferred to the new system. This option will
require the definition of events, publishers, and subscribers as
well as a mechanism to exchange events between the old and
new applications via a messaging bus.

Both of these options have pros and cons. Determining the right approach requires having a deeper understanding of existing monolithic
capabilities. In general, organizations should select the option that is simplest and leads to the least amount of technical debt.

23

Going cloud-native
to get results

PART II: TRANSFORM | SECTION 1: ARCHITECTURE TRANSFORMATION

Adapted from the Capgemini report "Cloud-native comes of age"

24 The app-modernization manual

Assess the application portfolio
and identify priorities for
cloud-native development.

Because the cloud-native approach demands significant
upfront investment in platforms, people, and skills, it is rarely
the best way to achieve short-term, bottom-line cost reduction.
CIOs need to evaluate which of their existing applications will
benefit most from being rewritten as cloud native, and also
which business initiatives and strategic priorities justify the
investment of creating net-new cloud-native applications.
Cloud native brings the greatest benefits when building new
applications or services that drive competitive differentiation
and top-line revenue growth. These will often be web, mobile,
IoT, or big-data apps.

Start small, and then scale up to
develop a skilled team.

Teaching thousands of developers new cloud-native skills at
once introduces too much change and risk. A more feasible
starting point is a single program involving one small team in
a contained area. This allows the value of these new methods
to be proven in a relatively low-risk manner. CIOs should select
members who are change agents and future leaders to drive
these early programs. Skills learned from these pilot projects
can then be fed into further initiatives on a more ambitious
scale. This delivers a gradual, sustainable increase in the
in-house skills base.

Adapt the IT operating model to
support both business agility
and stability.

DevOps is the essential enabler of cloud-native development.
DevOps is both a cultural shift and a technology movement.
The cultural changes that DevOps brings include the
removal of barriers between organizational units to
enable collaborative discussions within teams. DevOps is
underpinned by technology: specifically, the combination
of agile tools, automated testing, and the automated
provisioning of infrastructure and middleware, typically
using a Cloud Management Platform (CMP) and Application
Release Automation (ARA). The gradual shift from waterfall
development to DevOps does not remove the need to
document and test in a repeatable process with strong
governance. Key safeguards must remain in place without
slowing the process.

Be pragmatic in selecting technologies;
lock-in risks and integration challenges
are not insurmountable.
If an enterprise has the appetite to build engineering expertise
on the scale of Netflix or Google and needs to use special
features not available in an off-the-shelf PaaS offering, it
should consider building a custom PaaS with open-source
components. Otherwise, we recommend an off-the-shelf PaaS,
either already pre-packaged (such as Cloud Foundry or a public-
cloud PaaS) or a combination of containers and a container
orchestrator (Containers-as-a-Service). Complete portability
may not always be practical or justifiable in cost terms, but
containerization and open source offer the flexibility to build
applications in a hybrid model where they exist seamlessly in
different environments.

By taking a thoughtful, comprehensive approach to cloud-
native transformation, organizations can achieve velocity and
flexibility that is simply impossible in monolithic systems.

A key objective of app modernization is to shift to cloud-native development, where applications are built directly in the cloud or
on a PaaS platform rather than on-premises physical infrastructures. The shift to cloud-native development can help organizations
realize significant gains in agility and quality. There are a few important things to keep in mind.

25

Microservices: the foundation
of cloud-native development
With microservices, you can make an update to just one element of an application,
which accelerates release, updates, and enhancements. To get maximum value and
business agility from microservices, there are a few important factors to keep in mind.

Build for the business

In order to provide the agility and value
of cloud native, microservices design
should focus on single business domains.
Using an API-first design approach will
ensure that the microservices conform
to enterprise-wide consumption and
comply with security and governance
requirements. We recommend using
fifteen-factor design principles.
Domain-driven design, the de facto
architecture pattern for microservices,
breaks up complex business domains
into smaller data-driven microservices
and helps define clear boundaries for
each context. Microservices should be as
asynchronous as the individual business
processes allow to reduce dependency
on complex integrations.

Design for resilience

Microservices must be designed for
network and system failures, such
as delays, errors, or unavailability of
another service or third-party system.
Keeping communications asynchronous
allows for resiliency when some services
fail. Microservices should also provide a
default functionality in case of failures
from a downstream service. This could
be an error message, or, if the business
case permits, a default value that is
acceptable until the external service is
available. Even if microservices are built
for a UI screen to consume, they must be
responsible for all data input validation.
There are common frameworks to do
this using expression language and
annotations, rather than code.

Ensure observability

Centralized logging and monitoring are
a must for distributed microservices.
This enables the quick, manageable
tracking of failures when multiple APIs
and services are involved. When services
are built along with tracing and alerting
mechanisms, the mean time to resolve
the error is minimized. Log events
for timeouts and shutdowns should
include the level, hostname (instance
name), and message. Log events can
also be used for capacity planning and
scaling, for example, indicating which
services need higher instances. There
are multiple frameworks for centralized
logging which developers can use in a
plug-and-play manner.

PART II: TRANSFORM | SECTION 2: TECHNOLOGY TRANSFORMATION

26 The app-modernization manual

Enable automation

Testing tools should be used for the
integration of services. Start with
unit testing but don’t overlook the
importance of contract testing to
ensure that APIs are functioning as per
the agreed request and response. You
should also use automation testing in
the build pipeline to provide instant
feedback on check-ins and failures. With
these checkpoints in place, you
can be sure that untested code
doesn’t make it to the development
environment.

27

The challenge

A leading aerospace manufacturer was
facing legacy-system challenges and
wanted to modernize and improve
predictive maintenance of its supply
chain for better after-market service-
parts management. The first step was
to adopt a cloud-first approach to
improve lead time, forecasting accuracy,
inventory optimization, and, above all,
planning.

Our approach

We worked with the organization to
modernize its landscape. To enable
portability, improve resource efficiency,
and better utilize technology, we used
containers as the primary deployment
format for all cloud-native applications
involved in the migration, with
Capgemini managing the clustering,
networking, and deployment
automation in addition to creating an
open-source container-orchestration
system. We also worked to implement a
plan for agile transformation for greater
automation, discipline, and flexibility.
We also took an incremental approach
to DevOps with a strategy based on
three-, six-, and 12-month plans.

Results

The process of app modernization built
the foundation for change by
freeing the organization from legacy
platforms and creating the right cloud
environment. In this way, the company
was able to adopt AI/ML to improve its
predictive asset maintenance for faster
feedback and greater flexibility and
scalability in response to change. Server
provisioning now takes hours instead of
days, and if the user community wants
new predictive asset maintenance
features like demand aggregation,
teams can now develop and deploy
them quickly. Additionally, the inclusion
of security checks and reviews means
that the organization has a better
software pipeline.

Building a foundation for
digital manufacturing in the cloud

CASE STUDY

PART II: TRANSFORM | SECTION 2: TECHNOLOGY TRANSFORMATION

28 The app-modernization manual

29

Rewrite once, run anywhere:
Choosing the right
containerization approach
Key outcomes of cloud-native architecture, enabled by application modernization,
include greater scalability, elasticity, and cost savings as compared to the traditional
on-premises architecture. Indeed, the rapid uptake of cloud and microservices
architectures is helping enterprises innovate and grow their businesses faster
than ever. However, the modernization of the IT landscape can pose considerable
challenges for IT organizations, from dealing with relatively new requirements
associated with continuous delivery to managing distributed and granular application
components and hybrid infrastructure across the build, deploy, and operate lifecycle.

Container platforms are helping companies address these challenges by enabling a
vendor-agnostic ecosystem that operates seamlessly across hybrid and multi-cloud
scenarios. Containers package application components and their dependencies so
they can be easily version controlled and seamlessly ported and replicated across
different data-center and cloud platforms. The process of containerization involves
encapsulating an application and all of its dependencies so that it can run uniformly
and consistently on any infrastructure. Containerization allows applications to be
written once and run anywhere. This eases the development, testing, deployment,
and overall management of applications.

Container platforms respond to modernization
challenges

Although the benefits of containerization are clear, many enterprises struggle with
how to containerize their workloads, how to accelerate and automate the migration
to Kubernetes, and, finally, how to manage the overall run-time environment and
operations including applications, containers, clusters, and PODS spread across
on-premises and multi-cloud ecosystem. Choosing the right container orchestration
layer for applications can be a challenge. Should you manage it yourself or rely on a
solution offered by a PaaS provider or cloud-service provider?

PART II: TRANSFORM | SECTION 2: TECHNOLOGY TRANSFORMATION

30 The app-modernization manual

Run-your-own Kubernetes versus
managed Kubernetes

The Kubernetes open-source container- and process-
orchestration system can deploy applications running either
in containers or as processes. It is the standard container-
orchestration tool and is available for enterprises to manage on
their own or as a hosted service from cloud-service providers
like AWS or Microsoft, or by managed Kubernetes platforms
from companies such as RedHat or VMWare. Leveraging
Kubernetes means processes can be handled automatically,
allowing organizations to focus on functional applications
without worrying about infrastructure components.

Many organizations decide to run orchestration on their
own. This means manually handling processes, like lifecycle
management, which includes storage, complex clustering,
networking of nodes and PODs, scaling, load balancing,

and scheduling, and that requires considerable time
and investment.

In fact, except when an organization requires a high degree of
customization because of versioning at the master-node level,
managed container orchestration services have significant
advantages over running your own Kubernetes, including
speed, ease of operations, and costs.

Benefits of managed Kubernetes

With managed Kubernetes, cloud providers handle
provisioning, security, load balancing, upgrading, and
monitoring. Managed platforms also provide different
application-deployment and orchestration scenarios, including
cloud-native development, containerization with orchestration,
simplified deployment and management of microservices, and
a well-defined DevSecOps pipeline using different tool chains.

Parameters Run-your-own Kubernetes
Managed Kubernetes with

cloud-service providers

Ease of operations

Speed

Integration with providers

Customization

DevOps, microservices

Multi-cloud hosting support

Cost structure

31

Why embrace serverless?
With a modernized IT landscape, organizations have started thinking beyond virtual machines. Serverless technologies, in which
application infrastructure is provisioned by the cloud platform, are taking center stage. Because it allows companies to shift
away from the 24/7 run of servers and pay only for the compute cost of specific business functions through fully modularized
applications, serverless is an increasingly popular option. But despite the value serverless can provide, adoption maturity is still
in its early stages. Because of this, there are a number of myths about serverless circulating in the market, and it’s important to
separate fact from fiction and explore the real value of serverless.

Here are some of the misconceptions and reasons why serverless is increasingly the right architecture option for businesses:

Misconception #1:

Performance. Many think that serverless functions have longer
warm-up and API response times, but this is a misperception
related to the belief that one size fits all. In order to see
benefits like cost reduction and faster execution speeds, you
must configure the right memory size for the level of demand.
This depends on function complexity related to the particular
business process.

Misconception #2:

Expense. Serverless is only more expensive when less-
than-optimal services or domains are run in a serverless
environment. When executed properly and in the right domain,
serverless costs less than traditional models thanks to pay-
per-use and the elimination of the investment associated with
infrastructure management and sysops. Business domains
requiring higher levels of scalability and elasticity are ideal
options for serverless, whereas when usage patterns are
relatively flat there may not be any significant cost savings.

Misconception #3:

Vendor lock-in. Every cloud provider has its own version of
serverless architecture and the concept is the same across
all. This means platform-agnostic frameworks can be used to
create a wrapper around serverless services and make the code
independent of any specific vendor.

Misconception #4:

Security. Although the systems are shared, they are highly
secured and PCI compliant. In fact, serverless is no less secure
than other cloud-based environments.

Misconception #5:

Management. Serverless functions are widely supported by
many coding languages (Java, Python, Node.js, .Net), popular
CI/CD tools for deployment (Jenkins, VSTS, CodePipeline), and
industrialized tools for monitoring (New Relic, Kibana, Digital
Elk), making it not only easy but also feasible to manage and
deploy enterprise-level serverless-based applications.

As serverless has proliferated, so have the troubleshooting
tools that give companies the ability to manage their serverless
architectures autonomously. For example, monitoring
tools like New Relic and Kibana are easily integrated with
serverless functions for application log management and
monitoring. Additionally, some cloud providers enable remote
function debugging.

Though serverless is not the answer to every business
challenge, when used as intended it can provide significant
advantages over widely used on-demand cloud services.

PART II: TRANSFORM | SECTION 2: TECHNOLOGY TRANSFORMATION

32 The app-modernization manual

33

The challenge

Corteva Agriscience, once the
agricultural division of DowDuPont,
produces as much DNA sequence data
every six hours as existed in the entire
public sphere in 2008. The company
wanted to shift away from on-premises
processing and storage to ensure it
could continue to scale to meet
business demand.

Our approach

We worked with Corteva to replatform
its existing Hadoop-based genome
processing systems using a serverless,
cloud-native architecture.

Results

Corteva is now able to rapidly scale
and significantly reduce cost from its
previous on-premises infrastructure. In
addition, it gained tremendous speed
and efficiency. By leveraging AWS cloud-
native technology, genome processing
has been reduced from 30 days to just
one day.

Improving crops with cloud-powered
DNA analysis at Corteva

CASE STUDY

PART II: TRANSFORM | SECTION 2: TECHNOLOGY TRANSFORMATION

34 The app-modernization manual

35

How to become an integrator and
join the API economy

Adapted from the Capgemini report Unlocking the hybrid integration dividend

Application modernization relies on whether the organization can access data at great speed and breadth. Modernized hybrid
integration and microservices-based APIs are the means to making that happen.

APIs are key to unlocking the value of a modernized landscape and taking full advantage of cloud and other emerging technologies.
Modern integration tools connect all these applications and their functionalities. There are different approaches to hybrid
integration. Here are some of the possibilities and transformation action plans for each.

Scenario 1: API-first strategy

There are several different reasons for and approaches to
adopting an API-first strategy. Some organizations are creating
a portfolio of APIs from a consumption standpoint, such as for
mobile apps and self-service portals. Others are integrating
cloud-based and cloud-native apps, along with existing legacy
enterprise apps for seamless connectivity between back-end
and front-end systems.

Transformation action plan:

1. Identify and define your organization’s goals. For
example, incremental revenue streams, opening
new business channels, and improving customer or
employee experience and satisfaction levels.

2. Leverage a comprehensive API assessment and
adoption framework to assess how an API-led
integration approach can address integration flows,
unlocking of siloed data and services, and reusability,
security, and governance requirements.

Scenario 2: Legacy modernization

To modernize legacy IT estates, many organizations are
refactoring their legacy monolithic applications using a
microservices and API-based architecture. Others are adapting
legacy systems to support modern business and technology
needs by implementing an integration layer with services
and APIs to intermediate their legacy systems and various
consumption channels. This allows legacy systems and
applications to coexist with modern technologies, such as
cloud-native apps, SaaS, IoT, and mobile.

Transformation action plan:

1. Identify the monolithic legacy systems that form the
backbone of your organization – applications that are
technologically incompatible with newer ones.

2. Create a business case for modernizing your legacy
IT estate.

3. Leverage available capabilities to move your
legacy transformation forward at pace, including a
modernization framework, core integration framework,
and a robust architectural approach.

PART II: TRANSFORM | SECTION 2: TECHNOLOGY TRANSFORMATION

36 The app-modernization manual

Scenario 3: Legacy middleware/
ESB modernization

A mature hybrid integration strategy is essential to achieve
sustainable business growth. Organizations are looking at
born-in-the-cloud iPaaS or hybrid integration platforms
to support their digital-transformation initiatives and
to cut the high operational costs associated with legacy
middleware platforms.

Transformation action plan:

1. Make a sound business case for modernizing your
integration platform

2. Use a comprehensive cloud-integration assessment
framework to clarify the advantages of adopting a
modern, iPaaS-based integration platform.

Whatever journey you take, one thing’s for certain: leveraging
API-led integration is key to succeeding in the digital era.

37

The challenge

Focused on breaking industry dogma
with amazing customer service, this
carrier sought to deliver products
to the market at fantastic speed
through a digital company strategy and
organization.

Our approach

Capgemini delivered an end-to-end
digital transformation, including
strategy, agile implementation,
managed services, leveraging
microservices, Apigee Management,
continuous integration, delivery,
testing, platform, and infrastructure
management. We reconstructed
the legacy billing systems using
microservices running on a Pivotal
Cloud Foundry platform. The company
now has an agile digital architecture
and platform for the billing system of
record that keeps up with its dynamic
business environment.

Results

The business team now uses web,
retail, and care channels to flexibly
and rapidly adapt and scale services,
with continuously improving customer
experience. The cloud-native
architecture reduced manual steps by
50 percent and reduced end-to-end
billing domain delivery timeframes by
25 percent. Now ideation to execution
takes days, not months.

Reinventing a wireless carrier
with a platform for the future

CASE STUDY

PART II: TRANSFORM | SECTION 2: TECHNOLOGY TRANSFORMATION

38 The app-modernization manual

39

Application modernization fundamentally changes an
organization’s approach to application development, enabling
unprecedented levels of business agility and creating the need
for a shift to a DevOps way of working.

With the increasing uptake of DevOps, the traditional waterfall
model has been turned completely on its head, and what
used to be project-driven development is now product-driven
development.

A single team of cross-skilled people – a product team – works
closely together across all aspects of development to ensure
optimal outcomes, from provisioning to running the SCRUM
team to product development, CI/CD pipeline, and product
release. If a team owns a feature, it owns it end-to-end, so
there is no longer a single team responsible for testing and
nothing else. It’s a you-build-it-you-own-it model in which
everyone shares responsibility to maximize speed and agility.

Companies which have thus modernized applications then
need to also transform people and processes to enable the
shift from project-based development to product-driven
development. There are a few requirements.

Shifting from project-based to
product-based development

PART II: TRANSFORM | SECTION 3: ORGANIZATIONAL TRANSFORMATION

40 The app-modernization manual

Ensure it’s a joint initiative between
business and IT.

The reason for shifting to a DevOps way of working is to align
business and IT teams and create a continuous feedback loop
from both sides that allows for greater agility. Because of this,
ensuring a DevOps initiative is fully owned by both the business
and IT is critical to success. But achieving this can be a challenge
given that development has historically been an IT-led and
IT-specific endeavor. To be successful, the business needs to be
a core part of the DevOps team. A POD-as-a-Service structure
should be composed of cross-functional and multi-disciplinary
teams where the business (the product owner) provides
continuous feedback, governance, and guard-rails to drive
technology evolution, and IT brings in the right toolsets and
controls to drive feature richness. But it’s not just about having
new processes. This alignment between business and IT also
represents a major cultural shift that leaders need to address.

Make operations an integral part of
the process.

One of the most important components of the continuous
feedback loop inherent to a product-driven development
approach is ensuring operations is woven into the overall
DevOps process. Traditionally, operations has been an
afterthought and a separate phase that was overshadowed
by other phases of development and testing. In a product
approach, the development team and operations team are one
and the same.

In the POD- based model, developers have to think more
holistically about factors like the automation of potential error
or defect scenarios from the beginning of the development
process, because they are ultimately responsible for fixing
defects when they arise. If they don’t consider them at the start

of the process, development will not be optimized or efficient.
Because this emphasis on operations calls for a significantly
different set of skills than a traditional developer would have, a
strong training and recruitment plan is needed.

Ensure you have the right tooling.

We often see organizations struggling to fully realize the
benefits of DevOps because the tools they use haven’t shifted
alongside the significant process changes made. For example,
while Excel and Jenkins are perfectly appropriate in traditional
development models, Jira and Slack are more appropriate for
the DevOps way of working.

Also, in an optimized POD-based shared-responsibility model,
it is important to automate the maximum number of tasks that
require multiple teams to collaborate for a single outcome. Test
automations should include not just functional tests but also
security, infrastructure, and network tests; otherwise, teams
will find themselves falling into the traditional model where
multiple teams perform siloed tasks. Organizations need to
rapidly shift from DevOps to DevSecOps, where security is no
longer thought of as an external component or team.

Remember that velocity takes time.

Product visioning and grooming and release plans take time
for the team to achieve the level of collaboration and efficacy
required to see results. We often encounter teams with
unrealistic expectations about how soon they will see gains
in agility and speed; in our experience, it takes at least four
to five sprints along with a robust change-management and
governance plan. Being realistic is important for managing
expectations, and while it may take time to see high velocity,
remember that once you do, it will continuously increase at a
much faster pace than in the traditional model.

41

Once you’ve updated your architecture, technology, and organizational
structure and are working within a modernized environment, the next step
is optimizing operations. Although modernized landscapes can deliver
business value much faster, they also require management of a highly
distributed ecosystem from application features down to containers,
platform, and infrastructure layers. Because of this, managing modernized
environments using traditional application-development and support
models does not provide the level of scalability that is required by
modernized applications. In this section, we’ll discuss how to optimize
operations by leveraging managed services and POD-as-a-Service (POD)
models while also scaling with the right blend of design-time and
run-time controls.

Part III: Operate
Driving value from a
modernized environment

42 The app-modernization manual

43

PART III: OPERATE | DRIVING VALUE FROM A MODERNIZED ENVIRONMENT

44 The app-modernization manual

Traditionally, managed-services providers have focused on running and operating
on-premises infrastructures and, more recently, handling IaaS for cloud providers like
AWS and Microsoft Azure. By leaving management of their IT ecosystem to expert
partners that have delivered similar projects at scale, organization are leveraging
best practices and templates to get the most out of cloud and enable greater
efficiency, agility, and innovation. But because of the traditional separation between
infrastructure and application groups, these teams have operated in a siloed fashion.

But in the cloud-native world, where everything – even infra – is delivered as code,
DevOps is the default for application delivery and IT and business KPIs are one and the
same, because the traditional barrier between application and infrastructure teams
needs to be broken down. Infrastructure and application-development teams need to
work together, and managed services must encompass both.

A cloud-native ecosystem is generally complex and highly distributed, with a
sophisticated quilt of interwoven technologies and tools that most organizations
– and many legacy managed-services providers – are not equipped to run and
maintain. A cloud-native managed-service provider will draw on extensive experience
and expertise to support the end-to-end lifecycle management of this ecosystem,
which includes code pipeline management, container registries, container platform
maintenance, and orchestration. In this complex landscape, managed services provide
a high-degree of observability, automations that can detect and self-heal, and site
reliability engineering for high availability and performance, all of which are critical
in a cloud-native environment.

Managing environments
using traditional application-
development and support
models does not provide
the level of scalability that
is required by modernized
applications.

Leveraging cloud-native
managed services for
long-term benefits

45

The right mix of opacity and transparency: A good managed-
services provider will hide complexity for developers, ensuring
that they are able to deploy to PaaS platforms without needing
to think through the details of the running environment. While
development should be a simplified, “black-box” process during
the run phase, managed services should enable a high degree
of visibility. A managed services provider will build observability
into the front-end of the code at both the infrastructure and
applications levels with clear dashboards for monitoring and
automations that enable self-healing based on KPIs.

Seamless management: Cloud providers have emerged as
essential extensions to enterprise IT infrastructure, providing
elasticity on demand and unparalleled presence across
geographies. As organizations take advantage of a range of
cloud-native services from a variety of cloud providers, it’s
important that they’re able to leverage multiple clouds at the
same time. Managed-services providers can operate these
disparate environments to ensure that functionality remains
seamless from one cloud to another.

Security at scale and by design: Though some aspects remain
relatively similar, the security and governance required for
cloud-native workloads generally differ quite a bit from what is
required in a traditional environment. Given the dynamic nature
of cloud-native workloads, security needs to be delivered at
scale with built-in automation. A managed-services provider
will ensure that security is tightly woven into platforms at the
architecture level, from service mesh and secret management
to fine-grained logging and encryption.

Availability via application-level logic: In traditional IT
environments, availability is deployed at the network level via
highly scripted load balancers and global DNS solutions, while
in a cloud-native environment workloads are configured with
service mesh technology that auto-discovers microservices and
automatically reroutes traffic. An experienced service provider
will be able to configure and maintain a service mesh.

In short, when implemented correctly, cloud-native managed
services help organizations reap the full benefits of developing
and running in the cloud: simplicity, observability, scalability,
and automation. They allow IT teams to focus on driving
business value instead of managing the details of their
cloud-native environment. For example, with Capgemini
teams managing its environment, a large furniture retailer
leveraged DevOps and cloud native to completely transform
the e-commerce experience. Additionally, we worked with a
hospitality company to manage the DevOps CI/CD frameworks
and pipelines across vendors, ultimately helping the
organization realize a 10 percent increase in sales, a 20 percent
reduction in operational costs, and a 10 percent reduction in
development costs.

The potential of cloud-native is clear. With the right managed
services in place, organizations can ensure they’re taking
full advantage.

PART III: OPERATE | DRIVING VALUE FROM A MODERNIZED ENVIRONMENT

Cloud-native managed services done right
Cloud-native managed services ensure you realize the full potential of developing and running in the cloud. When done right,
cloud-native managed services deliver the following core benefits.

46 The app-modernization manual

47

In a traditional model, an IT organization can meet all of its
service-level agreements and KPIs while still not meeting
business needs. The product-centric model is more outcomes-
focused, with KPIs tied to business results.

One of the main benefits of PODs is their ability to drive
efficiency, and, as a result, savings. This is thanks to DevOps
modes of development and automation, the elimination of
time-consuming handoffs between AD and AM teams, and
the presence of a designated product owner who manages
backlogs and prioritizes critical work. Because of this, with
POD teams, it’s possible to achieve savings of 30 to 35

percent. Additionally, it cuts the costs associated with
shadow IT, a problem many organizations face when IT isn’t
able to deliver the level of speed and agility required.

But savings and efficiency represent only a fraction of the
benefit of the POD model. If a company looks to a POD model
to simply save money, it is not going to be successful. The
true value of a POD lies in its ability to enable IT to move at
the pace of business today. Instead of it taking three months
for the development team to get a new feature or product to
market, it takes three weeks with the POD model.

Embracing the POD model for ADM

SINGLE POD TEAM
One joint backlog

• New projects

• Changes

• Bugs (L3)

• Incidents (L2)

• Application orchestration

• Service requests

 Managing non-backlog services

 Backlog management

Epics
Projects or groups
of investments

Features
Major enhancements
or complex bug fixes

Stories
Unit-level tasks
– bug fixes, minor
enhancements

Application
management

Non-ticketed
tasks

Service
orchestration

PART III: OPERATE | DRIVING VALUE FROM A MODERNIZED ENVIRONMENT

48 The app-modernization manual

Following modernization, organizations may face challenges
achieving maximum agility from their applications for many
reasons. For example, the scalability and elasticity of the
application portfolio may remain dependent on IaaS and PaaS
layers. Additionally, the application layer may still operate in a
traditional static manner, meaning that DevOps teams face
the same challenges experienced in a monolithic architecture.

To truly achieve agility at scale with application
modernization, enterprises need to think beyond the
adoption of microservices, containerization, and the DevOps
approach in the development process. Accelerated
development velocity is of no relevance if there are
challenges further along in the workstream. For example, if
there is a bottleneck in operations, improvements in time-to-
market from having an updated architecture will never yield
the anticipated benefits.

The path beyond adoption of modern architectures includes
establishing the right blend of intelligent design-time and
run-time controls to continuously monitor, govern, predict,
and self-heal a cloud-native ecosystem. Design-time controls
focus on preventing failures by injecting design patterns on
service discovery, event sourcing, rules management, and

data-model designs. Run-time controls help detect, predict,
and auto-resolve failures by implementing mechanisms such
as continuous logging, monitoring, and proactively self-
healing for faulty or low-performing microservices. This
means operations has the same level of elasticity and
scalability as the application layer.

A DevSecOps toolchain includes an end-to-end run-time
controls approach with intelligent logging, monitoring, and
auto-healing solutions that can proactively detect or predict
application errors and security vulnerabilities, correlate and
perform root-cause-analyses across app code, container, PaaS,
and IaaS layers using policy and AI/Ml-based models, and
trigger auto-resolution/business transaction reconciliation
using purpose-built RPA and orchestration solutions.

Scaling beyond modernization

49

In conclusion

Starting on your application-modernization journey, it’s important to remember
that every organization’s trajectory is different, guided by different objectives and
business needs. This is why it’s so important to start with an assessment. It’s also
why, when building out your strategy, a one-size-fits all approach won’t do it. Certain
applications will be simply moved to the cloud while others will need to be entirely
rearchitected. Specific tools and processes will require updates, but you’ll likely need
to take a phased approach before you reap the full benefits. Finally, once you’ve
modernized, your journey still won’t stop there – you need to scale and further
optimize costs to benefit over the long term.

50 The app-modernization manual

Capgemini brings deep expertise and experience honed
over thousands of implementations to every application-
modernization project. We’ve worked with organizations of all
types to help them enable unprecedented levels of agility with
a comprehensive approach that includes the following pillars:

• Discovering the right approach with eAPM, a best-in-
class portfolio-management analysis tool with a graphical
visualization layer to help build the business case and
roadmap for transformation

• Enabling the adoption of microservices-based
architectures with Digital Cloud Platform, which includes
industry blueprints, transformation roadmaps, and a library
of pre-built software components to help accelerate cloud-
native development by 30 to 50 percent

• Enabling an end-to-end DevOps pipeline with our
DevOps Acceleration Platform, Capgemini’s web-based
platform that brings together all critical DevSecOps
tooling in one simple, easy-to-use interface with built-in
compliance, monitoring, and reporting

• Migrating workloads to containers with replatforming-in-
a-box that makes it easy to begin the cloud-native journey
quickly and simply

• Shifting to product-centric delivery and leaner
operations with POD-as-a-Service models that bring
together AD and AM in one business-outcomes focused
team for unprecedented agility

• Managing modernized workloads in a standard and
consistent manner across multi- and hybrid-cloud
ecosystems using the Capgemini Cloud Platform and a
multi-cluster managed services model.

MANAGE

DISCOVER

Capgemini
Cloud Platform

Multi-IaaS
management

Multi-PaaS
management

App
management

Application portfolio assessment

Agile assessments

DevOps maturity
assessments

Operating model
assessments

eAPMCloud-native

Pod structures

SaaS Application
modernization

Digital
Cloud

Platform

Agile and
DevOps CoEs

DevOps
Acceleration

Platform

New-age
commercial

models

Container
strategy

Cloud-migration
strategy

POD
models

TRANSFORM

51

About Capgemini
Capgemini is a global leader in consulting, digital transformation,
technology and engineering services. The Group is at the forefront
of innovation to address the entire breadth of clients’ opportunities
in the evolving world of cloud, digital and platforms. Building on
its strong 50-year+ heritage and deep industry-specific expertise,
Capgemini enables organizations to realize their business ambitions
through an array of services from strategy to operations. Capgemini
is driven by the conviction that the business value of technology
comes from and through people. Today, it is a multicultural company
of 270,000 team members in almost 50 countries. With Altran,
the Group reported 2019 combined revenues of $18.5 billion.

Learn more about us at

www.capgemini.com

Note: current conversion is €1 to $1.18 (8/15/20)

© Copyright 2021 Capgemini America, Inc.

The information contained herein is provided for general
informational purposes only and does not create a professional or
advisory relationship. It is provided without warranty or assurance of
any kind.

For more information, please contact:

Rishi Kulkarni
Enterprise Architect Director
Cloud Native Practice Lead
rishi.kulkarni@capgemini.com

Kaushik De
Principal, NA Application and Cloud
Technologies Go-to-Market Lead
kaushik.de@capgemini.com

You may also visit:

https://www.capgemini.com/us-en/service/

cloud-services-2

We are here to assist with any part of your modernization
journey and look forward to joining you on the path to
embracing Monday’s idea as Friday’s reality.

	Taking a phased approach to modernization
	Table of contents
	The app-modernization manual

	Home 25:
	TOC 25:
	Home 2:
	TOC 2:
	Home 3:
	TOC 3:
	Home 4:
	TOC 4:
	Home 6:
	TOC 6:
	Home 5:
	TOC 5:
	Home 7:
	TOC 7:
	Home 8:
	TOC 8:
	Home 9:
	TOC 9:
	Home 10:
	TOC 10:
	Home 11:
	TOC 11:
	Home 12:
	TOC 12:
	Home 13:
	TOC 13:
	Home 14:
	TOC 14:
	Home 15:
	TOC 15:
	Home 16:
	TOC 16:
	Home 17:
	TOC 17:
	Home 18:
	TOC 18:
	Home 19:
	TOC 19:
	Home 20:
	TOC 20:
	Home 21:
	TOC 21:
	Home 22:
	TOC 22:
	Home 23:
	TOC 23:
	Home 24:
	TOC 24:

