
JIT-JEA
Capgemini Agile

Architecture PoV

Part 3
Practicing JIT-JEA!

T A B L E O F

JIT-JEA Part 3: Practicing JIT-JEA!

CONTENTS
JIT-JEA Part 3: Practicing JIT-JEA! 04

Introduction 05

Bibliography 06

Description of Architecture Building Blocks (With What - When) 07
1. Manage technical complexity & risk (control & governance) - Architectural guardrails &

fitness functions 08

2. Take architectural decisions within the given context - LADR-Lightweight Architectural
Decision Records 10

3. Collect and share feedback from delivery teams - Architect sync & GEMBA walks 12

4. Evaluate and develop solutioning options - SBCE-Set Based Concurrent Engineering 14

5. Decouple Deploy and release - Flexible Release on Demand (RoD) 16

6. Design for adaptability (flexible architecture) - Architectural patterns 18

7. Capture & define requirements (manage risk) – Continuous Architecture, Architectural Runway
and Architectural Enablers 20

8. Research & learn (technology & trends awareness) - Technology Radar, Walking skeleton 22

9. Developing an Architectural Roadmap – Principles & Data-driven insights 24

10. Align stakeholders (Business & IT) - Domain Model, DDD 26

Authors 28

2 AGILE ARCHITECTURE PoV

Welcome to the
JIT-JEA Part 3:
Practicing JIT-JEA!

After having published our first Agile Architecture
Point Of View called JIT-JEA in January 2022 to
introduce our five pillars model: “Just Enough
Architecture”, “Just Enough Documentation”, “Just
Enough Governance”, “Just in Time” and “In iteration
size chunks”, we delivered the second one to talk
about 10 real-life examples.

So in the first JIT-JEA, we talked about the “What”,
in the second Point Of View about the “How” and
finally, in this third Agile Architecture Point Of
View, “Practicing JIT-JEA !”, we focus on the
“With-What” and “When” aspects based on 10 Agile
Architecture practices.

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

JIT-JEA
JUST ENOUGH ARCHITECTURE

ALIASGAR MUCHHALA

Global Architects Community
Lead Mumbai, IN

STEFANO ROSSINI

Italy Architects Community
Chief Architect, IT

3

Introduction
Agile architecture is the art of designing and delivering the “right” solution – meeting the requirements,
expectations, and demands of the client – while being able to respond to a change in an uncertain
environment, at an ever-increasing frequency.

In January 2022 we delivered the first Capgemini Point Of View about Agile Architecture called “The JIT-JEA
way of working”, introducing the concept of JIT-JEA: Just In Time, Just Enough Architecture (the “what”).

In the first Point of View, we defined the five pillars of Agile Architecture: Just Enough Architecture, Just
Enough Governance, Just Enough Documentation, Just In Time, and In Iteration Size Chunk.

The second Capgemini Agile Architecture Point Of View called “JIT-JEA in Action!” was delivered at the
beginning of 2023 and is a collection of 10 different real-life examples covering the five JIT-JEA pillars and
principles, coming from the field of our architecture delivery projects (the “how”).

In this third Agile Architecture Point Of View, called “Practicing JIT-JEA!”, we present 10 Agile Architecture
Building Blocks in order to highlight when we should use them during a typical agile life cycle way of working
(the “when”) and for each Architecture Building Block (the “with what”) we also make a cross-reference with
the two important Agile Architecture references as Open Group Agile Architecture [O-AA] and SAFe Agile
Architecture [SAFe-ARCH] and other useful references.

4 AGILE ARCHITECTURE PoV

JIT-JEA Part 1
«Way of working»

JIT-JEA FOUNDATION
The 5 pillars principles

JIT-JEA Part 2
«JIT-JEA in action!»

10 Agile Architecture
Concrete Samples

JIT-JEA Part 3
«Practicing JIT-JEA!»

10 Agile Architecture
Building Blocks

W
H

A
T

H
O

W
W

H
EN

 &

W
IT

H
 W

H
A

T

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

JIT-JEA
JUST ENOUGH ARCHITECTURE

https://www.capgemini.com/insights/research-library/agile-and-it-architecture/
https://www.capgemini.com/insights/research-library/agile-and-it-architecture/
https://www.capgemini.com/insights/research-library/agile-and-it-architecture-part-2/

Bibliography
Capgemini Agile Architecture Point of View: The JIT-JEA way of
working [JIT-JEA part 1]

https://www.capgemini.com/insights/research-library/agile-and-it-
architecture/

Capgemini Agile Architecture Point of View: The JIT-JEA in action!

[JIT-JEA part 2]

https://www.capgemini.com/insights/research-library/agile-and-it-
architecture-part-2/

Open Agile Architecture [O-AA]

https://pubs.opengroup.org/architecture/o-aa-standard-single/

SAFe Agile Architecture [SAFe-ARCH]

https://scaledagileframework.com/agile-architecture/

5

https://www.capgemini.com/insights/research-library/agile-and-it-architecture/
https://www.capgemini.com/insights/research-library/agile-and-it-architecture/
https://www.capgemini.com/insights/research-library/agile-and-it-architecture-part-2/
https://www.capgemini.com/insights/research-library/agile-and-it-architecture-part-2/
https://pubs.opengroup.org/architecture/o-aa-standard-single/
https://scaledagileframework.com/agile-architecture/

Description of Architecture Building
Blocks (With What - When)

Nr.
With What - Agile

Architecture
Building Block

When - Architecture
Activity

Intentional
Architecture

Evolving
Architecture

Emerging
Architecture

1
Architectural
Guardrails & Fitness
Functions

Manage technical
complexity & risk

(control &
governance)

Defining guardrails

Monitoring &
feedback loop

Exception
management

Request exceptions
when required

2

Lightweight
Architectural
Decision
Records (LADR)

Take architectural
decisions within the

given context

Decisions with high
impact and high

strategic importance

Decisions with high
impact or high

strategic importance

Decisions with low
impact or limited

strategic
importance

3

Architect sync,
GEMBA Walks,
Management by
Wandering Around
(MBWA)

Collect and share
feedback from
delivery teams

Ensure emerging
architecture aligns

with the vision

Facilitate alignment
between vision &

actual delivery

Ensure the
intentional

architecture is
realistic and

feasible

4
Set Based
Concurrent
Engineering (SBCE)

Evaluate and develop
solution options

Define evaluation
framework

Analyse options with
stakeholders

Propose alternative
solutions

5
Flexible Release on
Demand (RoD)

Decouple Deploy and
release

Define the techniques
for flexible RoD

Design the techniques
for flexible RoD

Implement the
techniques RoD

6

Architectural
Patterns, e.g.
Hexagonal, Clean
Architecture, Event
Driven Architecture
(EDA)

Design for
adaptability (flexible

architecture)

Define adaptable
architecture principles

(e.g. loose coupling)

Design for
adaptability &

flexibility

Implement
extensible design

patterns

7

Architectural
Enablers &
Architectural
Runway Continuous
Architecture

Capture & define
requirements
(manage risk)

Establish requirement
management

Quarterly plannings
Backlog grooming

Sprint planning

8

Walking Skeleton,
Minimum Viable
Architecture (MVA),
Sprint 0, Technology
Radar

Research & learn
(technology & trends

awareness)

Define solution
options

Explore solution
options & collect

feedback

Incorporate new
and emerging

technologies into
the system’s
architecture

9
Principles &
Data-Driven
Insights

Developing an
Architectural

Roadmap Gather
insights (understand
& monitor the as-is)

Long-term roadmap
with key architectural

investments

Connecting individual
short-term roadmaps

with the long-term
roadmap

Short-term
roadmap for

specific team/
product

10
Domain-Driven
Design (DDD)

Gather insights
(understand &

monitor the as-is)

Alignment across
value streams

Alignment at the
program level

Value stream
specific alignment

6 AGILE ARCHITECTURE PoV

Two mechanisms that organizations use to integrate evolvability into their system architectures are the
concepts of Fitness Functions and Architectural guardrails.

Fitness Functions objectively assess whether the system is actually meeting its identified non-functional
requirements (NFR); each fitness function tests a specific system characteristic.

Another important mechanism is the concept of architectural guardrails; as with their real-world roadside
equivalents, software guardrails are designed to keep people from straying into undesirable territory.

In real terms, guardrails represent a lightweight governance structure. They document how an organization
typically “does” things – and how, by implication, development teams are expected to “do” similar things. For
example, a guardrail may document not just the specific availability requirements for a new service, but also how
the organization goes about meeting such requirements; they can be patterns, good practices, or tools able to
“guardrail” the implementation as SONAR, JUnit, JMeter, etc.

Manage Technical
Complexity &
Risk (Control
& Governance)
Architectural Guardrails
& Fitness Functions

01

With What

FITNESS
FUNCTIONS

Stress

Test ...

UnitTests
Metrics

Chaos

Engineerin
g

7

• JIT-JEA Part 1: the 5 pillars [JIT-JEA part 1]:
4.5 In Iterations size chunks

• JIT-JEA Part 2: Agile Architecture in action!
[JIT-JEA part 2]: Sample #7 DevOps guardrails

• Open Agile Architecture [O-AA]:

 – Par. 6.3.1 Constraints/6.3.2 Fitness Functions/
6.3.3 Guardrails

• SAFe Agile Architecture [SAFe-ARCH]:
Lean Budget Guardrails: https://
v5.scaledagileframework.com/guardrails/

• Other references:

 – Fitness functions or how to protect key
characteristics from your product:
https://continuous-architecture.org/docs/
practices/fitness-functions.html

 – Building Evolutionary Architectures, N. Ford,
R. Parsons, P. Kua, O'Reilly, 2017

References

It is crucial to define architectural guardrails
as part of Intentional Architecture, setting the
foundation for guiding architectural decisions.
The Evolving Architecture focuses on continuous
monitoring through fitness functions to ensure
alignment with these guardrails.

However, in the dynamic context of Emerging
Architecture, exceptions may arise when strict
adherence isn't feasible. Managing these
exceptions and warnings becomes vital, requiring
a well-defined process for requesting and
reviewing them. This approach strikes a balance
between control and flexibility, allowing Agile
architecture to adapt to evolving needs while
maintaining governance and mitigating risks
effectively.

When

8 AGILE ARCHITECTURE PoV

https://v5.scaledagileframework.com/guardrails/
https://v5.scaledagileframework.com/guardrails/
https://continuous-architecture.org/docs/practices/fitness-functions.html
https://continuous-architecture.org/docs/practices/fitness-functions.html
https://continuous-architecture.org/docs/practices/fitness-functions.html

Agile methodologies do not discourage
documentation but rather advocate for meaningful
documentation. They emphasize the importance
of avoiding excessive and unwieldy documents that often become outdated. Instead, Agile favors smaller,
modular documents that are easier to maintain and to keep up to date.

In the realm of architecture, it is advisable to leverage Lightweight Architecture Decision Records (LADRs)
to facilitate and document architecturally significant decisions. LADRs streamline the decision-making
process, reducing the time and effort required. These concise records offer a more digestible format for all
stakeholders while ensuring that they contain all the necessary information for decision-making, including
capturing the architectural decision itself, the rationale behind and its associated impacts and consequences
within a given context.

Take Architectural
Decisions Within
The Given Context
LADR - Lightweight
Architectural Decision
Records

With What

• Number/Date
• Title
• Context

Why
• Decision

What/How
• Status

 Done
• Consequences

Light
Architecture
Decision
Record

02

9

Documenting Architecture Decisions using
Lightweight ADRs (Architectural Decision
Records) is a valuable practice applicable across all
architecture cycles: Intentional, Evolving,
and Emerging.

In the Intentional Architecture cycle, decisions
often span multiple streams and revolve around
significant decisions. During Emerging Architecture,
LADRs can be activated when encountering
challenges or opportunities (Emerge) on which
they need direction or guidance which is not in the
Intentional or Evolving Architecture. Furthermore,
Architecture Decisions may sometimes involve
tactical solutions, leading to potential technical
debt. LADRs serve a crucial role in documenting
these decisions and ensuring they are addressed
during subsequent refactoring efforts.

When

• JIT-JEA Part 1: the 5 pillars [JIT-JEA part 1]
Par.4.3.5 Architecture Decision Record (ADR)

• JIT-JEA Part 2: Agile Architecture in action!
[JIT-JEA part 2] Sample #3 LIGHTWEIGHT
ARCHITECTURE DECISION RECORD (LADR)

• Open Agile Architecture [O-AA]:
Par. 5.2. Architecturally Significant Decisions
Par. 5.3. Architecture Decision Record

• SAFe Agile Architecture [SAFe-ARCH]: NA

• Other references:

 – Michael Nygard - Documenting Architecture
Decisions: https://www.cognitect.com/
blog/2011/11/15/documenting-architecture-
decisions

 – Heiki W. Rupp (Red Hat) - Why you should
be using architecture decision records to
document your project: https://www.redhat.
com/architect/architecture-decision-records

 – Architecture Decision Record: https://
continuous-architecture.org/docs/practices/
architecture-decision-records.html

References

10 AGILE ARCHITECTURE PoV

https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://www.redhat.com/architect/architecture-decision-records
https://www.redhat.com/architect/architecture-decision-records
https://continuous-architecture.org/docs/practices/architecture-decision-records.html
https://continuous-architecture.org/docs/practices/architecture-decision-records.html
https://continuous-architecture.org/docs/practices/architecture-decision-records.html

“Going to the Gemba” is a powerful Lean
management practice that plays a vital role in
shaping the strategy formulation process. It means
visiting the place (Gemba is a Japanese term
meaning "the actual place") where value is created;
for example, when clients engage with the enterprise or when employees deliver products and services.
While data offers a representation of reality, it requires supplementation through real-world experiences. In
essence, a map, or data, is not a perfect reflection of the actual landscape, or reality.

Agile architects play a crucial role in maintaining the balance between Intentional and Emergent Design
throughout each iteration. They achieve this by evaluating the outcomes of enabler work, which encompasses
new knowledge acquisition and additions to the architectural runway. Architects stay aligned and share
progress and concerns at the Architect Sync event.

Collect and Share
Feedback from
Delivery Teams
Architect Sync &
GEMBA Walks

With What

Solution Train Sync

PM SyncRTE Sync

Coach Sync PO Sync
ART Sync

Team Sync

Arch SyncObserve

Com
m

unic
ate

C
o

o
p

e
ra

te

Recognize

Solve the Problem

GEMBA WALK

03

11

Conducting “Gemba walks” should become a
seamless, ingrained process. Utilizing the insights
and feedback garnered from these walks is the
best practice across all architecture stages.

In Intentional Architecture, these walks serve
to refine the architectural vision and enhance
guidance towards the teams. In Evolving
Architecture, they aid in aligning the intended
architecture with the emerging one. In Emerging
Architecture, Gemba walks provide valuable
insights into the feasibility and realism of the
intended solution for the teams.

To maintain a balanced approach, it's essential
to integrate Gemba walks into the daily routines
of both the Intentional and Evolving / Emerging
Architectures.

When

• JIT-JEA Part 1 [JIT-JEA part 1]: the 5 pillars:
4.3.4 Architecture Community of Practice
[JIT-JEA part 1]

• Open Agile Architecture [O-AA]: Par. 11.1.1.
Tenet 1. Situational Awareness

• Agile Architecture [SAFe-ARCH]: https://
scaledagileframework.com/agile-architecture/

• Continuous Exploration: https://
scaledagileframework.com/continuous-
exploration/

• Other references:
Gemba: https://en.wikipedia.org/wiki/Gemba

References

12 AGILE ARCHITECTURE PoV

https://scaledagileframework.com/agile-architecture/
https://scaledagileframework.com/agile-architecture/
https://scaledagileframework.com/agile-architecture/
https://scaledagileframework.com/continuous-exploration/
https://scaledagileframework.com/continuous-exploration/
https://scaledagileframework.com/continuous-exploration/
https://en.wikipedia.org/wiki/Gemba

SBCE-Set-Based Concurrent Engineering is an
approach to evaluate multiple product architecture
alternatives and to delay architecture decisions until
“the last responsible moment”.

Architects and developers initially cast a wider
design net, considering multiple design choices at the start. After that, they continuously evaluate economic
and technical trade-offs, typically exhibited by the objective evidence presented at integration-based learning
points. Then they eliminate the weaker options over time and ultimately converge on a final design based on
the knowledge gained till that point.

Evaluate and
Develop Solution
Options - SBCE-Set
Based Concurrent
Engineering

With What

Multiple
Design

Options

Learning Points Time

15

04

13

• JIT-JEA Part 2: Agile Architecture in action!
[JIT-JEA part 1]: Sample #8

• Open Agile Architecture [O-AA]: Par. 5.7. Set-
Based Concurrent Engineering (SBCE)

• SAFe Agile Architecture [SAFe-ARCH]:
Principle #3 – Assume variability; preserve
options: https://scaledagileframework.com/
assume-variability-preserve-options/

• Other references:
Allen C. Ward and Durward K. Sobek II: Lean
Product and Process Development, Second
Edition 2014

References

SBCE is a valuable approach when important
architecturally significant decisions must be
made. These decisions are typically made by one
or several teams and need to be coordinated
across teams. Intentional architecture supports
this process as it’s a purposeful set of statements,
models, and decisions that represent some future
architectural state. Therefore, SBCE should be
started as part of the Intentional Architecture.

In the overall architecture process, the emerging
architecture may require decisions coming
from intentional architecture to change. New
alternatives can be added, and past decisions can
be reversed. Therefore, it is important to document
the motivations behind past decisions, e.g. in a
Lightweight Architecture Decision Record (LADR).

To make maximum use of the time to arrive at a
maximum of progressive insights, SBCE will have
to be started as soon as possible and individual
decisions will have to be postponed until the Last
Responsible Moment.

When

14 AGILE ARCHITECTURE PoV

https://scaledagileframework.com/assume-variability-preserve-options/
https://scaledagileframework.com/assume-variability-preserve-options/

In Agile Architecture it’s important that the finalization
of a release can be decoupled from the actual
deployment. This enables addressing user-specific,
on-demand activities at the most opportune times,
aligning with when users require them or when
it offers the greatest economic benefit to both
customers and the business. For these different
reasons to have Flexible release on Demand several techniques are available:

• Feature toggles – Provides a mechanism that allows code to be turned “on” or “off” without needing
additional deployment, facilitating for example A/B testing of functionality.

• Dark launches – Like Feature toggles, a technique to selectively release/deploy new features into a
production environment without releasing the functionality to all end users.

• Canary releases – The practice of releasing the solution to a specific customer segment and measuring the
results before expanding and releasing it to more customers.

Decouple Deploy
and Release
Flexible Release
on Demand (RoD)

With What

Deploy

Release

<A>

Most
User

Same
User

Lo
ad

B
al

an
ce

r

New Version

Service 2

Service 1

Service 3

Database

Old Version

Service 1

Service 2

Service 3

Database

05

15

• JIT-JEA Part 2: Agile Architecture in action!
[JIT-JEA part 2]: Sample #6

• Open Agile Architecture [O-AA]: 6.4.1.1. Feature
Toggles

• SAFe Agile Architecture [SAFe-ARCH] Release
on demand: https://www.scaledagileframework.
com/release-on-demand/

• Other references:

 – Feature Toggles (aka Feature Flags): https://
martinfowler.com/articles/feature-toggles.html

 – Canary: https://en.wikipedia.org/wiki/Canary

References

As mentioned, several techniques are available
for creating Flexible Release on Demand. The
selection of technique depends on the specific
required flexibility and with that, the decision/
guideline to create such flexibility. Typically, Dark
Launches and Canary Releases are already decided
during Evolving Architecture and maybe even
in the Intentional Architecture. Feature Toggles
that decouple Deploy and Release are part of the
Emerging Architecture with the required Cross
stream alignment in the Evolving Architecture.

When

16 AGILE ARCHITECTURE PoV

https://www.scaledagileframework.com/release-on-demand/
https://www.scaledagileframework.com/release-on-demand/
https://scaledagileframework.com/release-on-demand/
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://en.wikipedia.org/wiki/Canary

Design for
Adaptability
(Flexible
Architecture)
Architectural Patterns

In an Agile Architecture, it's crucial to create a flexible
design that can adapt easily and swiftly to changes.
Architectural designs such as Hexagonal architecture,
Onion architecture, and Event-driven Architecture, which are grounded in the clean code principles advocated by
Robert C. Martin ("Uncle Bob"), aid in achieving this objective.

Hexagonal architecture: Created by Alistair Cockburn, it brings an interchangeability of adapter implementation
and, therefore, a great suppleness in composing the domain
with various ways of interacting with the software, as well
as implementing infrastructure capabilities. The Hexagonal
architecture allows an effective decoupling of application,
domain, and infrastructure concerns.

The Onion architecture: This has a fundamental rule that all code
can depend on layers more central, but code cannot depend on
layers further out from the core. In other words, all coupling is
toward the center.

Event-Driven Architecture (EDA) is an architecture centered

around the concept of an "event".

This approach leverages the immutable nature and decoupling
capability of events, serving as a robust foundation for designing and developing domain logic. Its emphasis on loose
coupling and strong autonomy, which prioritizes behavior and adaptability, underscores its value as a best practice
within agile architecture frameworks.

With What

Application

AdapterAdapter

Adapter
Adapter

Adapter
Adapter

Adapter
Adapter

Adapter

Adapter

Adapter
Adapter

app

06

P
ersistence Infrastru

ct
ur

e

Domain

Application

Presentation Event
Producers

Event Event

Event
Consumers

Event Channels
Event Event

Event Event

17

• JIT-JEA Part 2: Agile Architecture in action!
[JIT-JEA part 2]: Sample #4: Architecture Styles
enabling design flexibility

• Open Agile Architecture [O-AA]:

 – Par. 21.3. Hexagonal Architecture: Why?
Benefits?

 – Par. 21.2. Event-Driven Architecture

• Agile Architecture [SAFe-ARCH]: https://
scaledagileframework.com/agile-architecture/

• Other references:

 – Hexagonal architecture: https://alistair.
cockburn.us/hexagonalarchitecture/

 – The Onion Architecture: https://jeffreypalermo.
com/2008/07/the-onion-architecture-part-1/

 – The Clean Architecture (from: The Clean
Code Blog): https://blog.cleancoder.com/uncle-
bob/2012/08/13/the-clean-architecture.html

References

The intentional architecture outlines principles and
patterns that are crucial for ensuring architectural
adaptability within the environment. To maintain
alignment with these principles, guardrails and
fitness functions are set up, ensuring that Evolving
Architectures preserve their flexibility (e.g., as an
integral part of CI/CD pipelines). Teams involved
in developing the Emerging architecture need
comprehensive training in these patterns to
ensure accurate implementation that aligns with
the intentional architecture.

When

18 AGILE ARCHITECTURE PoV

https://scaledagileframework.com/agile-architecture/
https://scaledagileframework.com/agile-architecture/
https://scaledagileframework.com/agile-architecture/
https://alistair.cockburn.us/hexagonalarchitecture/
https://alistair.cockburn.us/hexagonalarchitecture/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

07

Capture & Define
Requirements
(Manage Risk)
Continuous Architecture,
Architectural Runway
and Architectural
Enablers

Within an agile context, the architecture discipline evolves. It shifts from a Big Up-Front Design (BUFD) to
Continuous Architecture. One of the things Continuous Architecture implies is that a small rapid change can
be applied, which is important to better manage the uncertainty and complexity that characterizes the digital
and agile transformation.

To minimize the risk of future functionalities failing to meet non-functional requirements and to ensure
cross-cutting concerns are considered, it's essential to factor in future developments when defining the
architecture. However, the question arises, how to capture and define requirements, manage priorities and
risks in an appropriate way?

The Architectural runway designs the technical foundations needed to implement near-term features
without excessive redesign; thus enabling a continuous flow of value.

Architectural enablers play a key role in constructing, expanding, and upkeeping the Architectural Runway.
They are mainly utilized for exploration purposes, such as implementing architecture, refactoring, developing
infrastructure, and ensuring compliance. These activities are made visible in the backlog for negotiation with
the Product Owner.

With What

Plan

Monito
rRelease

Test

Operate

Deploy

Tr
ai

n
th

e Model Build the M

odel

19

• JIT-JEA Part 1: the 5 pillars [JIT-JEA part 1]:
par. 4.1.2 Architectural Runway / Enablers

• JIT-JEA Part 2: Agile Architecture in action!
[JIT-JEA part 2]: Sample #1: Architecture Enablers /
Sample #6: Architectural Runway

• Open Agile Architecture [O-AA]:

 – Par. 4.5.2. Intentional Architecture

 – Par. 4.5.3. Concurrent, Continuous, and Refactored

 – Par. 9.14. Axiom 14. Bias for Change

• SAFe Agile Architecture [SAFe-ARCH]:

 – Enablers: https://scaledagileframework.com/
enablers

 – Architectural Runway: https://
scaledagileframework.com/architectural-runway/

 – Continuous Exploration: https://
scaledagileframework.com/continuous-
exploration/

• Architecting your product is a journey:
https://continuous-architecture.org/docs/practices/
architecture-runway.html

References

The intentional architecture establishes
requirements management (including architecture
enablers) by outlining the Architectural Runway,
thereby supporting both current and future needs.

The evolving architecture evaluates the
Architecture Runway as part of the quarterly
planning by combining intentional and emerging
architecture for the next program increment.

In the Emerging architecture, the content of
the Architecture Runway is used during backlog
grooming and for the actual sprint planning.

When

20 AGILE ARCHITECTURE PoV

https://scaledagileframework.com/enablers
https://scaledagileframework.com/enablers
https://scaledagileframework.com/enablers
https://scaledagileframework.com/architectural-runway/
https://scaledagileframework.com/architectural-runway/
https://scaledagileframework.com/architecturalrunway/
https://scaledagileframework.com/continuous-exploration/
https://scaledagileframework.com/continuous-exploration/
https://scaledagileframework.com/continuous-exploration/
https://scaledagileframework.com/continuous-exploration/
https://continuous-architecture.org/docs/practices/architecture-runway.html
https://continuous-architecture.org/docs/practices/architecture-runway.html

08

Research & Learn
(Technology &
Trends Awareness)
Technology Radar,
Walking Skeleton

In a world where technological change is accelerating
and the business landscape is constantly evolving,
Agile Architects must continuously research and learn
about new technologies and trends to ensure systems
meet the evolving needs of their organizations.

Walking skeletons are bare-bone representations of a system’s architecture that embody the essence of agile
development. When combined with proofs of concept (POCs/POVs) and prototypes, walking skeletons help
architects build Minimum Viable Architectures (MVAs) by swiftly and efficiently exploring ideas, validating
assumptions, and guiding initial design decisions, ensuring a robust architecture from the foundation.

Company Technology Radars can be used to identify new technologies and trends that may be relevant to
the walking skeleton or MVA. This can help architects make informed decisions about the technologies to use
and design the system to be flexible and adaptable to change.

With What

DOCKER FILE

Dockerfile CreatePolicy container

C
re

at
e

P
o

lic
y

e2
e

m
ic

ro
se

rv
ic

e

CreatePolicy microservice

Configurationapplication.yaml

Validation Logic

CreatePolicyValidator.java

Business Logic

CreatePolicyService.java

JPA / Hibernate

PolicyRepository.java

Lombok

Cross-Cuttings

21

• JIT-JEA Part 1: the 5 pillars [JIT-JEA part 1]:
par. 4.3.4 Architecture Community of Practice

• JIT-JEA Part 2: Agile Architecture in action!
[JIT-JEA part 2] SAMPLE 10: Technology Radar
for your company or division

• Open Agile Architecture [O-AA]:

 – Par. 5.5. From Intentional to Continuous

 – Par. 14.1. Defining Product Architecture

• Continuous Exploration:
https://scaledagileframework.com/continuous-
exploration/

• Other references:
 – Our Technology Radar: lifting the lid on how
we build, ship and scale digital products:
https://www.frog.co/designmind/technology-
radar-how-we-build-ship-scale-digital-products

 – Walking skeleton (archived): https://web.
archive.org/web/20140329201356/http://
alistair.cockburn.us/Walking+skeleton

 – A Minimum Viable Product Needs a Minimum
Viable Architecture: https://www.infoq.com/
articles/minimum-viable-architecture/

References

In the Intentional Architecture, agile architects
research and learn about the latest technologies
and trends and use this knowledge to define the
requirements and high-level solution options.

In the evolving architecture, agile architects build
walking skeletons and MVAs, and use POCs/POVs
and prototypes to validate design ideas and to get
feedback on those. This feedback is used to refine
the system's architecture and to ensure that it
meets the needs of its users.

As part of the emerging architecture, agile
architects incorporate new and emerging
technologies into the system's architecture. Sprint
0, often overlooked, is a critical phase in a project's
lifecycle. It's the preparatory phase where
architects define the project's technical vision,
ensuring alignment with organizational goals.

When

22 AGILE ARCHITECTURE PoV

https://scaledagileframework.com/continuous-exploration/
https://scaledagileframework.com/continuous-exploration/
https://scaledagileframework.com/continuous-exploration/
https://www.frog.co/designmind/technology-radar-how-we-build-ship-scale-digital-products
https://www.frog.co/designmind/technology-radar-how-we-build-ship-scale-digital-products
https://www.frog.co/designmind/technology-radar-how-we-build-ship-scale-digital-products
https://web.archive.org/web/20140329201356/http://alistair.cockburn.us/Walking+skeleton
https://web.archive.org/web/20140329201356/http://alistair.cockburn.us/Walking+skeleton
https://web.archive.org/web/20140329201356/http://alistair.cockburn.us/Walking+skeleton
https://web.archive.org/web/20140329201356/http:/alistair.cockburn.us/Walking+skeleton
https://www.infoq.com/articles/minimum-viable-architecture/
https://www.infoq.com/articles/minimum-viable-architecture/

09

Developing an
Architectural
Roadmap
Principles &
Data-Driven Insights

Agile architects play a critical role in ensuring that
company's technology investments are aligned with
its business strategy and goals. To do this, they need
to develop an architectural roadmap that identifies the key investments that need to be made to achieve the
company's vision and IT strategy.

When developing an architectural roadmap, it is important for agile architects to be data-driven. This means
using data to understand the current state of the company's technology landscape, identify trends and
opportunities, and make informed decisions about resource allocation.

Architecture modeling tools can be used to create visual representations of the system's architecture. This
can help to identify and communicate the key architectural components and interfaces. In addition, Portfolio
management tools can be used to track and manage the investments in the architectural roadmap.

With What

PI Plan

Determine
your

current
state

Define
your

desired
state

Conduct
a gap

analysis

Prioritize
your

actionable
items

Find the
best

sequence PI + 1 PI + 2

23

• JIT-JEA Part 1: the 5 pillars [JIT-JEA part 1]:
4.3 Just enough governance

• Open Agile Architecture [A-OO]:
Par 6.5.2.Developing Architectural roadmap

• SAFe Agile Architecture [SAFe-ARCH]:

 – SAFe Roadmap:
https://scaledagileframework.com/roadmap

• Agile methods as part of TOGAF 10:

 – https://pubs.opengroup.org/togaf-standard/

 – https://pubs.opengroup.org/togaf-standard/
adm/chap09.html

 – https://pubs.opengroup.org/togaf-standard/
digital-technology-adoption/index.html

References

With regards to developing an Architectural
Roadmap, the main difference between Intentional,
Evolving & Emerging architecture is the time frame
upon which you look at the roadmap:

• The Emerging Architecture details commitments
and immediate objectives for a defined period,
akin to a short-term roadmap. It outlines specific
deliverables and milestones for the upcoming
phases, potentially forecasting goals for
subsequent cycles.

• The Intentional Architecture encompasses
a broader view, spanning multiple years. It
charts out critical milestones and necessary
deliverables essential for realizing the
intentional architecture's vision, focusing on
long-term strategic direction.

• Evolving Architecture illustrates how the Emerging
Architectures align with the broader organizational
goals. It encapsulates the evolving nature of
various architectural components and their role in
achieving the overarching vision and objectives.

When

24 AGILE ARCHITECTURE PoV

https://scaledagileframework.com/roadmap
https://pubs.opengroup.org/togaf-standard/
https://pubs.opengroup.org/togaf-standard/adm/chap09.html
https://pubs.opengroup.org/togaf-standard/adm/chap09.html
https://pubs.opengroup.org/togaf-standard/digital-technology-adoption/index.html
https://pubs.opengroup.org/togaf-standard/digital-technology-adoption/index.html

10

Align Stakeholders
(Business & IT)
Domain Model,
Domain-Driven Design
(DDD)

During a transformation, it is essential to align business
and IT. To do so, different methods, and patterns exist.

Event Storming is a workshop-based method for
the collaborative exploration of complex business
domains involving key stakeholders. It supports cross-discipline conversations between business (domain experts,
product owners) and IT representatives (software developers). It allows to manage multiple perspectives on the same
model. The goal is to maximize the learning of all the participants. At the end of the Event Storming workshop, IT
representatives are ready to embrace the full power of Domain-Driven Design and microservices.

Domain-Driven Design was created by Eric Evans in 2003 following the release of his book “Tackling Complexity in
the Heart of Software”. DDD is a great tool for business and IT to understand each other. DDD ensures that the code
and the business data model are expressed in the business language. Software design must be driven by the business.
The goal is to transcribe the business intention and business needs into the software.

This design pattern helps establish a common language: A language structured around the domain model and used
by all team members to connect all the activities
of the team with the software. The ubiquitous
language is a deliberate language designed to
be unambiguous and on which all stakeholders
agree. This language is found in every artifact
manipulated by the stakeholders (UI, database,
source code, documents, etc.). The concepts
conveyed by the domain model are the primary
means of communication. The domain model is
the backbone of the ubiquitous language.

DDD delimits, through bounded contexts,
the applicability of a particular model so that
the team members have a clear and shared
understanding of consistency and how it
relates to other contexts. Bounded contexts simplify the architecture by separating concerns. DDD allows
to divide and decouple the architecture according to the business concept to address. The domain is often
modular, which makes it flexible, and easy to update with new requested changes.

With What

External
System

Policy

Command

Read
Model

Actor

Aggregate

Domain
Event

EVENT
STORMING

25

• JIT-JEA Part 1 [JIT-JEA part.1]: 3. AGILE IN
ARCHITECTURE FRAMEWORKS

• Open Agile Architecture [A-OO]:

 – Chapt. 19. Event Storming

 – Chapt. 20. Domain-Driven Design: Strategic
Patterns

• Domain Modeling: https://scaledagileframework.
com/domain-modeling/

• Other references:

 – Domain-Driven Design: Tackling Complexity in the
Heart of Software (Eric Evans)

References

In the intentional architecture, event storming can
be used during the design phase at different levels:
enterprise, domain, and sub-domain. Then in the
evolving architecture or emerging architecture,
event storming and DDD are essentially used at the
domain or sub-domain level.

When

26 AGILE ARCHITECTURE PoV

https://scaledagileframework.com/domain-modeling/
https://scaledagileframework.com/domain-modeling/
https://scaledagileframework.com/domainmodeling/

Authors
The authors of this Agile Architecture are all leading Architects at Capgemini.

Stefano Rossini
Chief Architect and Agile Coach

Stefano is Capgemini Italy Chief Architect expert
in services architecture SOA and MSA and he is also
an Agile evangelist and coach. Stefano loves both

Agile and Architecture. He leads the DevOps global
community and both Italian communities

about Agile (Italy Agile Hub) and Architects
(Italy Architects community).

Gert Helsen
Chief Architect for Financial Services

Gert is a Chief Architect at Capgemini working in the
Financial Services sector. Being passionate about people

and IT technology, Gert is active as a coach, mentor
and a certified trainer for many architects across the
Capgemini group. In addition, he leads an Innovation

Service and acts as a Chief Client Architect for a
strategic Financial Services client based in Europe.

Hans Van Rijs
Lead Account Architect
in the Education Sector

Hans van Rijs is an all-round architect, with a solid
background in software engineering and project

management. He is the Lead Account Architect in the
Education sector, a certified architecture trainer at the

Capgemini Academy, a member of The Open Group's O-AA
Work Group, and a board member of the CoP Architecture

NL. Hans likes to delve into innovative technologies and
agile methods and likes to share his knowledge and

experience with others.

Ruud De Wit
Chief Architect for Retail

Ruud is a senior architect at Capgemini. He acts as an
Client Chief Architect for clients in the Retail and Agri
sector. Besides that, Ruud is an Open-Group certified

trainer working for the Capgemini Academy and is a lead
for the architecture domain. Ruud is driven by combining
traditional and innovative technologies and development

methodologies when shaping solution architectures.

27 AGILE ARCHITECTURE PoV

Pascal Espinouse
Digital & Innovation Architect,

Chief Architect

Wijke Hamer
Chief Architect for Government

and Public Services

Pascal is a Chief Architect in Capgemini, specialized in
Digital Transformation & Innovation. Led by passion,

Pascal is a trainer and mentor within Capgemini Global
Architects Community. Leader of the Architects

Community of his practice, he is also part of the Core
Team leading the 1500+ Architects of Capgemini

France. Besides Architecture, Pascal’s highest
involvement relates to Sustainability and Generative AI.

Wijke Hamer is Chief Enterprise Architect at Capgemini.
Since more than 25 years she has led many architecture

engagements for large (international) organizations .
Wijke is certified by The Open Group as trainer of Open
Agile Architecture and Archimate3.2. She has achieved

the final round of the global ‘Women in Tech Award
2022’, in the category ‘Role Model’, and she has given

lectures about how to apply agile principles to achieve a
more human centered, inclusive architecture.

28

About
Capgemini

Capgemini is a global business and technology transformation partner, helping
organizations to accelerate their dual transition to a digital and sustainable world, while
creating tangible impact for enterprises and society. It is a responsible and diverse
group of 340,000 team members in more than 50 countries. With its strong over 55-year
heritage, Capgemini is trusted by its clients to unlock the value of technology to address
the entire breadth of their business needs. It delivers end-to-end services and solutions
leveraging strengths from strategy and design to engineering, all fueled by its market
leading capabilities in AI, cloud and data, combined with its deep industry expertise and
partner ecosystem. The Group reported 2023 global revenues of €22.5 billion.

Get the Future You Want | www.capgemini.com
M

A
C

S-
A

g
ile

_1
9

-0
2-

20
24

_P
ri

ya
n

ka
 P

au
l

Copyright © 2024 Capgemini. All rights reserved.

http://www.capgemini.com/

