
AGILE & IT
ARCHITECTURE

PART. 2
The JIT-JEA in Action

WELCOME TO
THE JIT-JEA IN
ACTION
After we issued the first JIT-JEA (Just In time-Just
Enough Architecture) external POV paper in January
2022, we wanted to provide some working examples
illustrating not just the definition of JIT-JEA but also
showcasing how the ‘art’ of Agile Architecture is
practised.

This paper entails 10 real-life examples covering ‘Just
Enough Architecture’, ‘Just Enough Documentation’,
‘Just Enough Governance’, ‘Just in Time’ and ‘In-iteration
Size Chunks’.

GUNNAR MENZEL

Master Certified Architect
Manchester, UK

KAI SCHROEDER

Global Architects Community
Lead München, DE

STEFANO ROSSINI

Chief Architect Italy
TPO Lead Milan, IT

2 AGILE & IT ARCHITECTURE

T A B L E O F

TENTS
CON

INTRODUCTION 04
Sample 1: Architecture Enablers 06

Sample 2: Documentation as Code (DaC) 08

Sample 3: Lightweight Architecture Decision Record (LADR) 10

Sample 4: Architecture styles enabling design flexibility 12

Sample 5: Walking Skeleton as Agile Architecture Reference 14

Sample 6: Architectural Runway 16

Sample 7: DevOps Guardrails 18

Sample 8: Low code for rapid evaluation of architecture alternatives 20

Sample 9: Design Systems 22

Sample 10: Technology Radar for your company or division 24

Concluding remarks on JIT-JEA in action 26

BIBLIOGRAPHY 27
Authors 28

3

INTRODUCTION
We will share in this document 10 concrete examples
that you may leverage to accelerate your practical way
to do Architecture in an agile context. We have mapped
them, in the table below, with the 5 agile pillars from
our JIT-JEA model:

N. Sample Just Enough
Architecture

Just Enough
Documentation

Just Enough
Governance

Just in
Time!

In iteration
size chunks

1 Architecture Enablers √ √ √

2 Documentation as Code √ √ √

3 Lightweight ADR √ √ √ √

4 Architecture Styles √ √

5 Walking Skeleton √ √ √

6 Architectural Runway √ √ √

7 DevOps Guardrails √ √ √

8 Low Code √ √

9 Design Systems √ √ √

10 Technology Radar √ √ √

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

JIT-JEA
JUST ENOUGH ARCHITECTURE

Disclaimer: The examples provided are for illustrative purposes only and may not fully capture the specific context of
the client's situation.

4 AGILE & IT ARCHITECTURE

5

A practical way to introduce ‘Just Enough Architecture’
topics into the Agile way of working is to introduce
a new kind of task into the agile backlog to describe
architectural and technical topics.

SAFe names these kind of activities Enablers and
describes four types of them: exploration, architecture,
infrastructure, and compliance [SAFe Enablers].

Agile aims to deliver value through business features
however, architectural topics must also be addressed to
guarantee mid-term and long-term results.

Product Owners and Agile Architects must work together
to decide on the right balance between User Stories
and Enablers into the Product and Sprint Backlogs.

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JIT-JEA
JUST ENOUGH ARCHITECTURE

Scope: Replatforming of a legacy
application

Sector: Insurance

Tools: JIRA

SAMPLE 1:
ARCHITECTURE
ENABLERS

Having Enablers displayed on the task board the way
user stories are visualized makes this task easier and
gives the team the capability to spend the right
amount of effort on them.

Enablers bring the following key benefits:
• Enablers make the architecture and technical debt

topics visible in the backlog

• Enablers allow the team and Product Owner to
prioritize architectural topics together with business
features and develop them in iteration size chunks

• With enablers, the Agile Architecture is built-in and
integrated in the standard Agile Way-of-Working

6 AGILE & IT ARCHITECTURE

Enablers in action:
For an important insurance project, we extended the configuration of the JIRA Tool that was used to track
business user stories.

We created a new Jira Issue Type representing Enablers and a new custom field to track its different types—
Exploration, Architecture, Infrastructure
and Compliance.

We decided to manage the new Enablers
stories in the same way (with the same
workflow and same task boards) we did for
business stories, avoiding the creation of a
‘dedicated’ task board and integrating the
development of Enabler tasks with the rest
of activities.

Using different card colours helped to visualize
– starting from the iteration planning activity –
the balance between enablers and user stories.

Activities like ‘create a nightly build of
DevOps Toolchain’ or ‘need for a Spike for a
cache component’ were, therefore, clearly
visible in the task board as Infrastructure
and Exploration enablers with priority and
estimation, and their progress has been
tracked during the iteration.

During the iteration review we demonstrated
the results achieved through Enablers and
we tracked the percentage of time spent
on Enabler stories compared to business
user stories.

Architecture Enablers

7

The mantra of Agile Architecture is that the
architecture must always be in sync with the code.

‘Everything as code’ is a commonly adopted principle
by Agile and DevOps practitioners and useful for Agile
Architecture. It consists in applying the same techniques
used to manage source code (reviewing, versioning,
branching, configuration control) to all the other aspects
related to software development: infrastructure,
environment provisioning, architecture itself, DevOps
pipelines and also Documentation [Documentation
as Code].

Using a plain-text format for documents, such as
AsciiDoc, Markdown, or LaTex, which are among the

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JIT-JEA
JUST ENOUGH ARCHITECTURE

Scope: Web Application

Sector: Internal Capgemini Product

Tools: Gitlab, MkDocs, HTML website,
gollum

SAMPLE 2:
DOCUMENTATION
AS CODE (DAC)

most common ones, we can leverage the powerful
features of source-code management, including
versioning, diff, merge, etc.

The source code of documents is processed to build
human-readable formats such as Microsoft Word and
PDF or even HTML websites.

Documentation as Code brings the following
key benefits:

• The simple markdown format helps to focus on the
content and readability of the document more than
on its format and beauty.

8 AGILE & IT ARCHITECTURE

Documentation as Code in action:
For a Capgemini product, we have created and maintained technical documentation to keep track of all
the configurations related to different environments.

We have also produced a user manual and technical section to explain details of the user interface and
calculation rules applied in the software.

This documentation was periodically shared during workshops to describe the product features to
the users.

We decided to use the Markdown language [Markdown Language] to format the document, leveraging the
built-in capability of Gitlab to automatically render the document in HTML.

For the developers to be able to locally modify the document and immediately see the effect of their
changes, we chose Gollum [Gollum] as the markdown editor and renderer, fully integrated with GIT.

We were also able to compile PDF documents from markdown for major releases of each document.

• The document can be produced in an easy, effective,
and collaborative way and can be easily updated and
maintained over time. For example: producing a new
version for every agile iteration and following the
same lifecycle of the software development.

• The version history helps to understand who has
applied the changes, when, and how. The work done
by all the team members is merged into a single
document with the possibility to review, integrate,
and validate. Publishing workflows can be managed
as well.

Documentation as Code (DaC)

9

Any architectural decision must be tracked and
versioned in a simple and effective way. It is better
to have lightweight information updated frequently
than heavy comprehensive documents that can quickly
become outdated. Furthermore, those decisions need
to be shared not only with IT but with the business.

For any architectural decision, we just describe the
context of how it was taken with possible scenarios

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

JIT-JEA
JUST ENOUGH ARCHITECTURE

Scope: Enterprise

Sector: Automotive and Insurance

Tools: Sharepoint

SAMPLE 3:
LIGHTWEIGHT
ARCHITECTURE
DECISION RECORD
(LADR)

envisioned before reaching there and the foreseen
implications and consequences. Another field is used
to track the status, including proposed, accepted, and
rejected.

We recommend adding tags to be able to categorize the
decisions, e.g. by product, organization, type of decision,
etc. These tags act as filters to help take the decision
easily: a search engine is key, to ensure the success of
LADR usage within the teams.

Because a decision can be revised and changed over
time, it is important to keep track of the changes to the
record itself so that it is possible to see how it looked
like at a certain point in time.

10 AGILE & IT ARCHITECTURE

Using the right tool is key to achieve ease of access
both to track new records and read the past decisions.
Documentation as Code, as described earlier, is a great
technique to implement a lightweight decision registry,
ensuring both a quick and easy access and the capability
to track changes and compare revisions.

A sample Lightweight Architect Decision Record (LADR)
can be found here [LADR Example].

LADR brings the following key benefits:

• Architecture decisions are easily shared and
communicated through the organization. They can be
easily found through a search engine.

• LADR speeds up the decision process by bringing
focus and alignment across all roles in the
organization.

• LADR gives you a clear Architecture history log, which
otherwise would have been hidden in big architecture
documents.

LADR in action:
For two important customers from the automotive and insurance sectors, it was decided to keep track of
all the Architectural decisions in a lightweight flavour.

To be sure that the documents were always updated to track every key decision taken by the team, we
enhanced the ‘Definition of Done’ of the Agile Team to include the updated ADR as an integrated and
mandatory step of the software development lifecycle. If during the analysis or the development of a
user story the team takes an architectural decision, the story itself cannot be considered as ‘done’ until
the related Architect Decision Record is properly created or updated.

The ADR registry is periodically checked before every code release.

LADR sample for automotive client (over a Sharepoint website)

Context & Problem Statement
For ITSM efficiency, a feature has been proposed to generate alerting when tickets
reach 50 or 70% of the SLA. Goal is to avoid SLA breach of tickets. A dashboard will
help management prioritize all incidents and take decisions.

Product: …
Status: Accepted

IT department: …
Date: …

Business department: …
Attendees: …, …, …, …

Decision drivers
…
…

Considered scenarios
Scenario 1: …
Scenario 2: …

Decision & consequences
…

Lightweight Architecture Decision Record (LADR)

11

An emerging architecture encourages teams to make
decisions ‘Just in Time’. Consequently, an architectural
style used in an agile environment should enable the
ability to respond to changes quickly. One principle
that supports agility is a clear separation of concerns
between the domain and other parts of a system.
While decoupling the domain part from other parts,
the domain logic is kept independent of any technical
aspects, making it easier to change or delay technical
decisions without impacting the domain model.

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

JIT-JEA
JUST ENOUGH ARCHITECTURE

Scope: e-Filing System

Sector: Public Sector

Tools: Archi and Power point

SAMPLE 4:
ARCHITECTURE
STYLES ENABLING
DESIGN
FLEXIBILITY

There are different architectural styles that follow
the idea of a clear separation of concerns. Examples
are the hexagonal architecture style promoted by
Alistair Cockburn [Hexagonal Architecture] and Clean
Architecture promoted by Robert C. Martin [Clean Code].
Both architectural styles suggest that the domain model
is forming the core of the system with no dependencies
on the other parts of the system. All dependencies
are directed towards the domain core, which provides
interfaces to be invoked by the surrounding components
(Inbound) as well as interfaces that are invoked by the
domain core and implemented by the surrounding
components (Outbound). These kinds of architectural
styles lead to some considerable benefits with regards to
an emerging architecture:

12 AGILE & IT ARCHITECTURE

• Delaying technical decisions: Since the domain part
of the system is well encapsulated, the team can
evolve the domain logic without depending on the
technical decisions. That makes it easier to postpone
decisions to a more responsible moment. For
example, you can kick off a project with no database
at all and decide later if a relational or NoSQL
database suits you better.

• Changing infrastructure with less impact: With
the inward-facing dependencies, you do not rely on

adapter implementations. That makes it easier to
change or replace them. For example, you can easily
replace a REST adapter with a gRPC adapter.

• Testability of business logic: Since the domain part
of the system is independent of any surroundings,
a high testability without the use of infrastructure
components can be achieved.

Postponed decisions can be tracked as part of an
architecture decision log.

Architecture styles enabling design flexibility in action:
In a public-sector project with high uncertainty and technological complexity, the hexagonal architecture
style was used to keep the domain logic independent of database technology. Initially unsure about which
database technology to use, the team used a simple and well-known database while delaying the decision.
Eventually, the team gained enough confidence to make the infrastructural change with minimal effort. The
clean domain core allowed for effective management of different technologies and easy evolution of the
solution by adding specific adapters. The testability of the business logic was completely independent of
technological enhancements, ensuring validity of the domain logic at any time.

Architecture Styles Enabling Design Flexibility

emerged into

DOMAIN
MODEL

INBOUND PORT

INBOUND PORT

Rest AdapterInternal
Web UI

OUTBOUND PORT

PostgreSQL
 Adapter PostgreSQL

OUTBOUND PORT

Messaging
Adapter

Apache Kafka

01

02

03

04

DOMAIN
MODELINBOUND PORT

OUTBOUND PORT

Object Storage
Adapter S3 Storage

OUTBOUND PORT

Messaging
Adapter

Apache Kafka

SOAP AdapterInbound
Port

eMail AdapterExternal
Channel

01

02

03

04

INBOUND PORT

Rest AdapterInternal
Web UI

SOAP AdapterInbound
Port

13

“A Walking Skeleton is a tiny implementation of the
system that performs a small end-to-end function.
It need not use the final architecture but it should
link together the main architectural components.
The architecture and functionality can then evolve in
parallel.” — Alistair Cockburn [Walking Skeleton]

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

JIT-JEA
JUST ENOUGH ARCHITECTURE

Scope: Microservices based web
application

Sector: Insurance

Tools: Eclipse IDE, SpringBoot, Oracle
11g, Jenkins toolchain

SAMPLE 5:
WALKING
SKELETON AS AGILE
ARCHITECTURE
REFERENCE

The walking skeleton is a good strategy to introduce
‘Just Enough Architecture’ topics into the Agile Way-of-
Working.

‘Walking’ means working, executable and testable,
‘Skeleton’ means minimized & simplified, end-to-end.

The goal of the Walking Skeleton is to be able to explain
the whole product in terms of:

• Basic technologies and frameworks

• Architectural building blocks

• Core design patterns to be used

14 AGILE & IT ARCHITECTURE

DOCKER FILE

Dockerfile CreatePolicy container

C
re

at
e

P
o

lic
y

e2
e

m
ic

ro
se

rv
ic

e

CreatePolicy microservice

Configurationapplication.yaml

Validation Logic

CreatePolicyValidator.java

Business Logic

CreatePolicyService.java

JPA / Hibernate

PolicyRepository.java

Lombok

Cross-Cuttings

It’s a minimal implementation that proves the
intentional architecture through some end-to-end
functionality. The goal is to get early feedback
on whether the chosen design, architecture, and
technology are suitable.

Walking Skeleton brings the following key benefits:

• Basic reference implementation

• Early feedback for the Minimal Viable Architecture
(MVA)

• Working architecture that is easy to scale

• Set the initial direction that every developer must take
when approaching a new implementation

Walking Skeleton in action:
For an important insurance project, we had to implement a set of microservices to enable the
communication between web and mobile applications and a legacy system.

To create a microservices reference implementation for the developers and have a common guiding
implementation among all microservices, we created a ‘Walking Skeleton’ based on the target
architecture including Spring Boot, Spring MVC, Spring JPA. We implemented it as a medium-complexity
microservice, not too complex to remain readable and easily understandable, and not too simple to
remain meaningful.

The Walking Skeleton is the full-stack working implementation of the microservice, from the HTTP
endpoint to the database and external legacy service invocation.

Most of the programming and cross-cutting aspect, including documentation, logging, security, naming
convention, package and layer organization, feature flags, guardrails has been covered in the simplest
but still meaningful way possible.

Walking Skeleton as Agile Architecture Reference

15

The Architectural Runway consists of the existing code,
components, and technical infrastructure needed to
implement the near-term features without excessive
redesign and delay [SAFe Architectural Runway].

This concept is in place when the architecture is capable
of ‘landing’ the upcoming system or software releases.
Iterations or releases are compared to airplanes coming
in for landing, and the architecture is to ensure that the
runway is suitable for it to land safely.

The Architectural Runway provides a way of integrating
changes with the emerging architecture during the life
of a long project.

These will be analysed and reviewed with the existing
and future ‘safe landing’ at the heart of all the decisions
reliant on constant communication and feedback

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

JIT-JEA
JUST ENOUGH ARCHITECTURE

Scope: Digital Transformation

Sector: Public

SAMPLE 6:
ARCHITECTURAL
RUNWAY

between the teams, in the same way a pilot and control
tower consistently update the local and changing
conditions.

Architectural Runway brings the following key
benefits:

• Provide consistency of the IT landscape

• Reduce rework

• Continuous evaluation against the changing external
elements

16 AGILE & IT ARCHITECTURE

Architectural Runway in action:
For a client on a digital transformation program, we have implemented an Architectural Runway as
a real metaphor for the landing of an airplane. We needed an open communication channel with the
control tower, a clear and long enough landing track (depending on the size and weight of the plane),
the right airplane configuration (depending on the weather conditions), supporting systems to guide the
airplane during the landing approach, well-defined procedures (e.g. a landing checklist) and continuous
monitoring of all flight parameters (airspeed, altitude).

We started by putting in place the communication channel with the control tower—a dialogue zone
between the transversal program architects in charge of intentional architecture and teams responsible
for emerging design. Every week the backlog JIRA items were reviewed, the user stories related to
architecture were identified and related to intentional architecture.

Debates in this dialogue zone allowed commonly finding the relevant design patterns, technologies,
checklists, configuration with features toggles, launch procedures and architectural decisions—all those
were stored in Confluence.

To be able to successfully deploy the application, we had to ensure that the Azure environment was ready
on time and could cope with the non-functional requirements to let the application run smoothly and
land safely. In addition, we had defined a CI/CD pipeline supporting automatic deployments in the right
environments to guide the landing approach.

We also used KPIs to monitor the flight parameters of the evolving architecture, including Java-based
microservices, REST APIs, Azure PaaS such as network usage using Dynatrace and API Consumption using
API Gateway dashboards.

Architectural Runway

17

An architecture is defined with a set of principles,
guidelines, technologies, good practices, and standards.

To be sure that architectural decisions remain respected
during the project and maintenance lifecycles, we need
to setup some mechanism to quickly check if these are
followed in a proper way.

As with their real-world roadside equivalents, software
and technologies guardrails are designed to keep
people from straying onto dangerous or forbidden
territory.

In real terms, guardrails represent a lightweight
governance structure. [O-AA Guardrails]

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

JIT-JEA
JUST ENOUGH ARCHITECTURE

Scope: Capgemini Product

Sector: Banking

Tools: DevOps Toolchain Production
Line, e3d Jira, Opensource tools

SAMPLE 7:
DEVOPS
GUARDRAILS

DevOps Platforms provide a quick and effective way
to establish IT Guardrails and kickstart the JIT-JEA way
of working across all team members and stakeholders.
Combined with Walking Skeletons and Reference
Architectures, it can be used to steer architectural
principles and assure consistency across the IT delivery.

Together with communication tools and fitness
functions, including automatic unit tests, performance
tests, and code coverage, these modern tools offer
several different features on a single platform that can
be leveraged as technology guardrails. Samples of such
DevOps Toolchains are Azure DevOps, Atlassian Suite,
GitLab and many others.

18 AGILE & IT ARCHITECTURE

GREENSIGHT

DevOps Guardrails bring the following key benefits:

• Automatic check of the architecture compliance

DevOps Guardrails in action:
Within the banking sector, we used a DevOps Toolchain combined with Atlassian Jira Software and MS
Teams to set up guardrails that ensure consistency across the delivery process.

We used the Production Line, the Capgemini Industrialization DevOps Toolchain based on the best-in-
class open-source components such as Jenkins, Gitlab, Nexus, SonarQube and more [PRODUCTION LINE
CAPGEMINI].

After defining the methodologies, the guidelines and good practices, we configured the tools to
implement the architect decisions and detect any violation of the agreed behaviours at the earliest.

• We used ArchUnit to check source code against the agreed software architecture rules, including
software layer consistency and naming conventions

• We used daily SonarQube, CAST and Checkmarks to check quality and security of the software code
that ensured the absence of blocking or critical issues

• We used JUnit for unit testing and Selenium for Web pages testing integrated in the build process to
ensure that all test cases passed before releasing the software

• JaCoCo Jenkins Plugin were used to check that the Test Code Coverage was above the acknowledged
threshold of 50%

• We checked that the DevOps Toolchain is used on a day-to-day basis, at least once in a day

• We used Jira Software to setup Scrum boards for all the developer teams to have Scrum sprints
synchronized and of the same length of two weeks

• Help decentralized decision-making

• Avoid dangerous decisions taken by single developers

DevOps Guardrails

19

Set Based Concurrent Engineering [O-AA SBCE] [SAFe –
Principle 3] is an approach to evaluate multiple product
architecture alternatives. It builds upon principles
to keep options open, while evaluating different
alternatives and eliminating the weaker ones. While
current technologies support this way of working, there
often is not the time to create extensive prototypes
and perform market research to evaluate the different

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

JIT-JEA
JUST ENOUGH ARCHITECTURE

Scope: Enterprise

Sector: Insurance

Tools: Low code (Mendix)

SAMPLE 8:
LOW CODE FOR
RAPID EVALUATION
OF ARCHITECTURE
ALTERNATIVES

alternatives. This is where rapid prototyping with low
code comes in.

Low-code technology offers a cost-efficient way of
creating working enterprise applications to test out real
business products and architecture alternatives. And the
best thing is the sunk or non-recoverable cost in case
of a solution failure is very low. However, if the solution
is a success, low code provides a solid enterprise level
application that can easily be adapted and changed as
required. Low-code technology lowers development
cost while it speeds up the critical time-to-market that is
crucial to stay competitive.

20 AGILE & IT ARCHITECTURE

G
lo

ba
l

 Te
m

pl
at

es
Re

gi
on

Pr
od

uc
t G

ro
up

Product Group Templates

Common Product Module

Region Templates

Region App

Common Region Module

Common Region Module

Region Customizations
Region Product Module

SSO

Regional Portal

BI

E-mailRegion Integration Product Integration

Product Integration

Plant Speci�c

Type or line speci�c

Product App

Common Product Module

Region Product Module

Product-speci�c logic+data

Region Integration

Product App

Common Product Module

Region Product Module

Product-speci�c logic+data

Region Integration

WEEK 1 WEEK 2 WEEK 3-4

IDEATION CREATE AND LAUNCH MVP EVALUATE AND DIMINISH
OR EVOLVE MVP

Note that low code is not mandatory to do rapid
prototyping or evaluation of multiple architecture
alternatives. However, experience shows it will speed
up the process. Before applying low code, one should
spend time on selecting the right platform that supports
the use case(s) at hand.

Rapid Prototyping brings the following key benefits:

• Explore different architecture alternatives in days/
weeks instead of months

• Capture requirements faster

• Low-code acts as an intrinsic guardrail, speeding up
development and evaluation

Rapid Evaluation with Low Code in action:
A global insurance company struggled bringing live new insurance products—the time from ideation to
market research and launch of a product could easily take 9-18 months. In the current market scenario,
that’s a recipe for failure and, ultimately, bankruptcy.

We set up a composable microservice architecture based on the Mendix low-code platform, which allows
experimentation of new insurance products within weeks instead of months. The initial architecture as
shown below can be considered an Agile Architecture as it does not (yet) contain many details. Instead, it
allows further evolution guided by prototyping and experimentation for many insurance products.

The advantage of this architecture, supported by low-code technology, is that it enables rapid
prototyping and experimentation for new business ideas at low cost. It also makes it possible to launch
new insurance products only two weeks after ideation. This supports the agile organization and staying
ahead of the competition.

Low Code for Rapid Evaluation of Architecture Alternatives

21

Companies are connecting with their customers in
more ways than ever. While clients often use multiple
channels, they always expect a seamless and consistent
omnichannel experience.

Especially in larger organizations, with multiple agile
teams working on different products, it becomes a
challenge to deliver products with a consistent style and
user experience. Teams often reinvent the wheel when
new visual components are required. Sometimes there
is reuse of previous material but, as there is no central
repository, that material might already be outdated or
even classified as ‘bad examples’.

Design Systems define a collection of design patterns,
component libraries and good practices that ensure

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

Scope: Front-end Apps

Sector: Energy Sector

Tools: Figma, Zeroheight and Miro

SAMPLE 9:
DESIGN SYSTEMS

consistent digital products. Very much like a set of
instructions and a Lego kit for everyone.

From an architectural perspective, design systems
clearly provide a layer of abstraction enabling a
composable architecture within and across applications.

Based on the corporate style guides of the past,
design systems offer shared libraries and documents
that are easy to find and use. Such guidance is written
down in code and kept under version control to make
it less ambiguous and easier to maintain than simple
documents.

22 AGILE & IT ARCHITECTURE

Design Systems allow product development teams to
focus. They can address strategic challenges around the
product itself without reinventing the wheel every time
a new visual component is needed.

Design systems bring the following key benefits:

• Faster time to market, thanks to structural reuse of a
managed set of UX resources

• Reduced cost of software development (less
rework, decrease maintenance work, less alignment
discussions required across teams)

• Improved brand value and customer adoption, thanks
to a consistent and recognizable user experience

Design Systems in action:
From Minimum Viable Product (MVP) design system to a trusted and embedded partner

A Belgium grid operator for electricity and natural gas, needed to consolidate their design efforts,
Capgemini proposed an MVP approach to create a new design system. This MVP firstly focused on
auditing all the current components, consolidating, and defining new components in the library and
redesigning the client portal & public website to be in line with the new foundation.

The work was so successful that the new design language has grown and been extended to all of
company’s digital touchpoints with the help of Capgemini’s embedded design team that has been there
since the implementation of the MVP. Capgemini also played a more strategic role in the design system,
defining the companies’ design principles and governance processes.

The design system brought speed and consistency for the new brand in the energy market.

Design Systems

23

An architect in an agile environment is expected to
leverage relevant technologies in the right way, at the
right moment and just in time. As technology evolves
faster than ever, this poses several challenges:

• How to get inspired, bring the outside view and decide
on which technology to assess, experiment with, or
even adopt within a company or division?

• How to share experiences and communicate about
decisions on technologies within the company?

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JU
ST

 IN
 T

IM
E

!

Scope: Technology Market Watch

Sector: Water Sector

Tools: Open Source

SAMPLE 10:
TECHNOLOGY
RADAR FOR YOUR
COMPANY OR
DIVISION

A Technology Radar offers a platform to provide an
answer to these questions:

• Producers of the radar: Creating a view and aligning
with technologies that are relevant to the company
requires teams to closely follow the industry trends
and have good content discussions on the value, risks,
and relevance of these technologies for the company.

• Consumers of the radar: A Technology Radar offers a
centralized view for teams to indicate the evolution,
status and potential technology that can be used as
part of the IT solutioning.

24 AGILE & IT ARCHITECTURE

In a Technology Radar, you typically have four rings:

• Adopt: The technology is mature and ready to be used
by all teams in a company

• Trial: The technology is being used as part of a PoC or
pilot

• Assess: The technology is being assessed for its
relevance in the company

• Hold: The technology is not to be used in the company

The Radar itself can exist in any form, even a simple
spreadsheet, and a good practice is to make it visual via
a radial diagram. An open-source example is available
here [Technology Radar OSS Sample].

We also recommend combining Technology Radar with
Architectural Decision Records by logging the reasoning
behind putting certain technologies in certain rings.

A Technology Radar brings the following key benefits:

• Allows improving decision making on the IT spend,
anticipates and enables the adoption of new or
evolving technologies

• Performs risk management related to technology
disruption

• Can be used as a governance and communication tool
to show what are the technologies being considered.
It also indicates the readiness of new technologies to
be part of the IT solutioning

Technology Radar in action:
Since 2018, Capgemini has built a Technology Radar for a European water company. During this exercise,
Capgemini conducts primary and secondary research on lots of technologies and options across
different technology horizons. Once validated by Capgemini SMEs, the report is presented to key client
stakeholders from innovation, sustainability, customer services, digital strategy, and field services teams.

The report allows the client to improve their decision making on the IT spend, increase their awareness
of other operating units in the technology landscape and provide early identification of technologies,
technological trends, and shocks. This Technology Radar is a living tool that, for this client, is refreshed
twice a year.

Technology Radar for Your Company or Division

25

CONCLUDING REMARKS ON
JIT-JEA IN ACTION
In this second Agile Architecture Capgemini Point of
View, we have detailed 10 pragmatic techniques and
tools to practice JIT-JEA. They have been selected
based on the value they brought to real engagements.
We have described these techniques and tools and
were able to share their real-life and successful
implementation in different contexts by different team
topologies.

This proves that practicing IT Architecture in an agile
way and applying the JIT-JEA concepts is not only
possible but brings outstanding value to teams and
their broader organization. However, we recognize that

Agile Architecture is in its early stages. Through this
document, we were encouraged to find the trailblazers
who have adopted this architecture for long enough to
provide the insights presented here.

This is another stepping stone towards democratizing
Agile Architecture and JIT-JEA. The journey has just
begun! We intend to continue publishing, combining
both the conceptual view provided by our first POV, and
these concrete, real-life experiences. In the meantime,
if you would like to learn more about JIT-JEA or the
samples from this report, don’t hesitate to reach out
to us.

26 AGILE & IT ARCHITECTURE

BIBLIOGRAPHY
[JIT-JEA part.1] Capgemini Agile Architecture Point of View: JIT-JEA Core Concepts
https://www.capgemini.com/wp-content/uploads/2022/01/AGILE-IT-ARCHITECTURE_PoV.pdf

[SAFe Enablers] https://www.scaledagileframework.com/enablers

[Documentation as Code] https://www.writethedocs.org/guide/docs-as-code/

[Markdown Language] https://markdown.github.io/

[Gollum] https://github.com/gollum/gollum

[Technology Radar OSS Sample] https://github.com/thoughtworks/build-your-own-radar

[LADR Example]
https://github.com/peter-evans/lightweight-architecture-decision-records/blob/master/0001-ladr-template.md

[Walking Skeleton] https://web.archive.org/web/20140329201356/http://alistair.cockburn.us/Walking+skeleton

[O-AA Guardrails] https://pubs.opengroup.org/architecture/o-aa-standard-single/#KLP-CAR-guardrails

[PRODUCTION LINE CAPGEMINI] https://www.youtube.com/watch?v=X_7qnEPsR4s

[O-AA SBCE]
https://pubs.opengroup.org/architecture/o-aa-standard-single/#_set_based_concurrent_engineering_sbce

[SAFe Principle 3] https://www.scaledagileframework.com/assume-variability-preserve-options/

[SAFe Architectural Runway] https://www.scaledagileframework.com/architectural-runway/

[Hexagonal architecture] https://alistair.cockburn.us/hexagonal-architecture/

[Clean Code] https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

27

https://pubs.opengroup.org/architecture/o-aa-standard-single/
https://www.capgemini.com/wp-content/uploads/2022/01/AGILE-IT-ARCHITECTURE_PoV.pdf
https://www.scaledagileframework.com/enablers
https://www.writethedocs.org/guide/docs-as-code/
https://markdown.github.io/
https://github.com/gollum/gollum
https://github.com/thoughtworks/build-your-own-radar
https://github.com/peter-evans/lightweight-architecture-decision-records/blob/master/0001-ladr-template.md
https://web.archive.org/web/20140329201356/http://alistair.cockburn.us/Walking+skeleton
https://pubs.opengroup.org/architecture/o-aa-standard-single/#KLP-CAR-guardrails
https://www.youtube.com/watch?v=X_7qnEPsR4s
https://www.scaledagileframework.com/assume-variability-preserve-options/
https://www.scaledagileframework.com/architectural-runway/
https://alistair.cockburn.us/hexagonal-architecture/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

AUTHORS
The authors of this Agile Architecture paper are:

STEFANO ROSSINI
Italy BU Indus Leader,

Capgemini Chief Architect and Agile Coach

Stefano is the Italy BU Industrialization leader. He
is a Capgemini Chief Architect expert in services

architecture SOA and MSA and he is also an Agile
evangelist and coach.

Stefano loves the topic of Agile Architecture since
he really loves both of them: Agile and Architecture.

He leads the DevOps global community and the
Italian communities about Agile and Architect.

PASCAL ESPINOUSE
Digital & Innovation Architect,

Capgemini Chief Architect.

Pascal is a Chief Architect in Capgemini, specialized
in Digital Transformation & Innovation. Led by
passion, Pascal is a trainer and mentor within

Capgemini Global Architects Community. Leader of
the Architects Community of his practice, he is also
part of the Core Team leading the 1500+ Architects
of Capgemini France. Besides Architecture, Pascal’s

highest involvement relates to Sustainability.

GERT HELSEN
Chief Architect in Capgemini

Gert is a Chief Architect in Capgemini working in the
Financial Services sector. Being passionate about
people and IT technology, Gert is active as coach,
mentor and certified trainer for many architects

across the Capgemini group. In addition, he leads
an Innovation Service and acts as Chief Account
Architect for a strategic Financial Services client

based in Europe.

ALESSANDRO PIRONI
Senior Software Architect and

Agile Coach

Alessandro is an active member of the Italian
Architect Community and is co-founder and co-leader
of the Italy Agile Hub. Member of the Transform and
Perform Office in Italy, he helps Italian engagements

applying Agile methodologies and architectural
principles to their day-by-day delivery.

28 AGILE & IT ARCHITECTURE

LISA ECKERSLEY
Integration Architect,

Capgemini Chief Architect

As an Integration specialist Chief Architect in
Capgemini, for 25 years Lisa has been integral to

many large digital transformation programs across
multiple sectors. She mentors and trains others

and is active on steering groups for Women
in Capgemini.

JEAN PHILIPPE DEFRANCE
Vice President Edge Strategy, GTM &

Operations, Capgemini Senior Architect

Over the last 15 years, Jean-Philippe combined
his expertise in architecture, design thinking

and agile to lead successfully large IT
transformations. He is now developing the Group

Edge Computing business.

SEBASTIAN SCHNELKER
Managing Architect

and Agile Leader

Sebastian is an enthusiast of modern software
development approaches (agile, lean, UX) and like
to share these best-of-breed practices to provoke

a change of our way of working and thinking.
Within Capgemini Sebastian is very engaged in a
diverse set of communities and conduct internal
trainings on various design & architecture topics.

MARIEN KROUWEL
Low Code Expert, Agile Solution Architect

and Lead Trainer

Marien Krouwel is an expert in low code/no
code and cloud services, helping customers

accelerate digital transformation and innovation by
implementing low-code/no-code platforms. He is an
experienced agile solution architect and lead trainer

at Capgemini Academy.

29

About
Capgemini

Capgemini is a global leader in partnering with companies to transform and manage
their business by harnessing the power of technology. The Group is guided everyday
by its purpose of unleashing human energy through technology for an inclusive and
sustainable future. It is a responsible and diverse organization of over 360,000 team
members in more than 50 countries. With its strong 55-year heritage and deep industry
expertise, Capgemini is trusted by its clients to address the entire breadth of their
business needs, from strategy and design to operations, fueled by the fast evolving
and innovative world of cloud, data, AI, connectivity, software, digital engineering and
platforms. The Group reported in 2022 global revenues of €22 billion.

Get the Future You Want | www.capgemini.com
M

A
C

S-
A

g
ile

_1
4

-0
2-

20
23

_S
u

ro
jit

Copyright © 2023 Capgemini. All rights reserved.

http://www.capgemini.com/

